Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cutaneous leishmaniasis: immune responses in protection and pathogenesis

Key Points

  • Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations that is determined largely by the host immune response. The host immune response to infection is influenced both by host genetics and the Leishmania spp. and/or strain.

  • The rapid recruitment of neutrophils and inflammatory monocytes following infection with Leishmania influences the course of disease. Neutrophils can have both protective and deleterious roles, whereas inflammatory monocytes kill Leishmania parasites and differentiate into monocyte-derived dendritic cells that promote the development of protective CD4+ T helper 1 (TH1) cells.

  • Control of Leishmania infection depends on the production of interferon-γ by CD4+ TH1 cells, which leads to enhanced killing by macrophages due to the production of reactive oxygen species and nitric oxide.

  • CD8+ T cells recruited to Leishmania lesions exhibit a cytolytic profile and lyse infected cells without killing the parasites, which leads to enhanced inflammation and increased severity of disease. Controlling these pathogenic CD8+ T cells, or the downstream mediators of inflammation that they induce, is a new approach to leishmaniasis immunotherapy.

  • Infection with Leishmania generates several types of CD4+ T cells that mediate resistance to reinfection, including effector T cells, effector memory T cells, central memory T cells and tissue-resident memory T cells. There is currently no Leishmania vaccine, and a hurdle for vaccine development is that the most effective T cells are short-lived effector T cells; targeting longer lived central memory and tissue-resident memory T cells is an alternative approach.

Abstract

Cutaneous leishmaniasis is a major public health problem and causes a range of diseases from self-healing infections to chronic disfiguring disease. Currently, there is no vaccine for leishmaniasis, and drug therapy is often ineffective. Since the discovery of CD4+ T helper 1 (TH1) cells and TH2 cells 30 years ago, studies of cutaneous leishmaniasis in mice have answered basic immunological questions concerning the development and maintenance of CD4+ T cell subsets. However, new strategies for controlling the human disease have not been forthcoming. Nevertheless, advances in our knowledge of the cells that participate in protection against Leishmania infection and the cells that mediate increased pathology have highlighted new approaches for vaccine development and immunotherapy. In this Review, we discuss the early events associated with infection, the CD4+ T cells that mediate protective immunity and the pathological role that CD8+ T cells can have in cutaneous leishmaniasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of disease in human cutaneous and mucosal leishmaniasis.
Figure 2: The involvement of innate cells in parasite persistence and control of infection.
Figure 3: The dual role of CD8+ T cells in leishmaniasis.
Figure 4: IL-1β and TNF can be protective or pathogenic in cutaneous leishmaniasis.

Similar content being viewed by others

References

  1. Alvar, J. et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7, e35671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carvalho, E. M., Barral, A., Costa, J. M., Bittencourt, A. & Marsden, P. Clinical and immunopathological aspects of disseminated cutaneous leishmaniasis. Acta Trop. 56, 315–325 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Bacellar, O. et al. Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infect. Immun. 70, 6734–6740 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turk, J. L. & Bryceson, A. D. Immunological phenomena in leprosy and related diseases. Adv. Immunol. 13, 209–266 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Scott, P., Natovitz, P., Coffman, R. L., Pearce, E. & Sher, A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168, 1675–1684 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Heinzel, F. P., Sadick, M. D., Holaday, B. J., Coffman, R. L. & Locksley, R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169, 59–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Kaye, P. & Scott, P. Leishmaniasis: complexity at the host–pathogen interface. Nat. Rev. Microbiol. 9, 604–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Sacks, D. & Kamhawi, S. Molecular aspects of parasite–vector and vector–host interactions in leishmaniasis. Annu. Rev. Microbiol. 55, 453–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Belkaid, Y. et al. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J. Immunol. 165, 969–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro-Gomes, F. L. et al. Site-dependent recruitment of inflammatory cells determines the effective dose of Leishmania major. Infect. Immun. 82, 2713–2727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peters, N. C. et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970–974 (2008). This paper provides the first visualization of the rapid recruitment of neutrophils to the site of Leishmania infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guimaraes-Costa, A. B. et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl Acad. Sci. USA 106, 6748–6753 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rochael, N. C. et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Sci. Rep. 5, 18302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chagas, A. C. et al. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 10, e1003923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Novais, F. O. et al. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J. Immunol. 183, 8088–8098 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. de Souza Carmo, E. V., Katz, S. & Barbieri, C. L. Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages. PLoS ONE 5, e13815 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. van Zandbergen, G. et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol. 173, 6521–6525 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hurrell, B. P. et al. Rapid sequestration of Leishmania mexicana by neutrophils contributes to the development of chronic lesion. PLoS Pathog. 11, e1004929 (2015). This study uses neutropaenic Genista mice to demonstrate that neutrophils promote the development of chronic L. mexicana lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charmoy, M. et al. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog. 6, e1000755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ribeiro-Gomes, F. L., Peters, N. C., Debrabant, A. & Sacks, D. L. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog. 8, e1002536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ribeiro-Gomes, F. L. et al. Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8+ T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death Dis. 6, e2018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tacchini-Cottier, F. et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J. Immunol. 165, 2628–2636 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ordonez-Rueda, D. et al. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur. J. Immunol. 42, 2395–2408 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Charmoy, M. et al. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a non-healing strain of Leishmania major in C57BL/6 mice. Eur. J. Immunol. 46, 897–911 (2016). This study suggests that the inflammasome and IL-1β are required for severe disease in chronic leishmaniasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ng, L. G. et al. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog. 4, e1000222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goncalves, R., Zhang, X., Cohen, H., Debrabant, A. & Mosser, D. M. Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection. J. Exp. Med. 208, 1253–1265 (2011). This paper is the first to demonstrate that inflammatory monocytes are rapidly recruited to the site of infection and kill the Leishmania parasite.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato, N. et al. CC chemokine receptor (CCR)2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nacy, C. A., Meltzer, M. S., Leonard, E. J. & Wyler, D. J. Intracellular replication and lymphokine-induced destruction of Leishmania tropica in C3H/HeN mouse macrophages. J. Immunol. 127, 2381–2386 (1981).

    CAS  PubMed  Google Scholar 

  30. Matheoud, D. et al. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 14, 15–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Novais, F. O. et al. Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species. J. Infect. Dis. 209, 1288–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocha, F. J., Schleicher, U., Mattner, J., Alber, G. & Bogdan, C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect. Immun. 75, 3823–3832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Green, S. J., Crawford, R. M., Hockmeyer, J. T., Meltzer, M. S. & Nacy, C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-γ-stimulated macrophages by induction of tumor necrosis factor-α. J. Immunol. 145, 4290–4297 (1990).

    CAS  PubMed  Google Scholar 

  34. Bogdan, C., Moll, H., Solbach, W. & Rollinghoff, M. Tumor necrosis factor-α in combination with interferon-γ, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur. J. Immunol. 20, 1131–1135 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Olekhnovitch, R., Ryffel, B., Muller, A. J. & Bousso, P. Collective nitric oxide production provides tissue-wide immunity during Leishmania infection. J. Clin. Invest. 124, 1711–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, X. Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Gantt, K. R. et al. Oxidative responses of human and murine macrophages during phagocytosis of Leishmania chagasi. J. Immunol. 167, 893–901 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Qadoumi, M., Becker, I., Donhauser, N., Rollinghoff, M. & Bogdan, C. Expression of inducible nitric oxide synthase in skin lesions of patients with American cutaneous leishmaniasis. Infect. Immun. 70, 4638–4642 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Chatelain, R., Varkila, K. & Coffman, R. L. IL-4 induces a Th2 response in Leishmania major-infected mice. J. Immunol. 148, 1182–1187 (1992).

    CAS  PubMed  Google Scholar 

  42. von Stebut, E., Belkaid, Y., Jakob, T., Sacks, D. L. & Udey, M. C. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188, 1547–1552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iezzi, G. et al. Lymph node resident rather than skin-derived dendritic cells initiate specific T cell responses after Leishmania major infection. J. Immunol. 177, 1250–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007). A comprehensive study of the role of monocyte-derived DCs in priming a protective T H 1-type response.

    Article  CAS  PubMed  Google Scholar 

  45. Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6, 600–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Uzonna, J. E., Joyce, K. L. & Scott, P. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon γ-producing CD8+ T cells. J. Exp. Med. 199, 1559–1566 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Belkaid, Y. et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168, 3992–4000 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Filipe-Santos, O. et al. A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Muller, A. J. et al. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37, 147–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Antonelli, L. R. et al. Disparate immunoregulatory potentials for double-negative (CD4CD8) αβ and γδ T cells from human patients with cutaneous leishmaniasis. Infect. Immun. 74, 6317–6323 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mou, Z. et al. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major. PLoS Pathog. 10, e1004396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liew, F. Y., Hale, C. & Howard, J. G. Immunologic regulation of experimental cutaneous leishmaniasis. V. Characterization of effector and specific suppressor T cells. J. Immunol. 128, 1917–1922 (1982).

    CAS  PubMed  Google Scholar 

  55. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Peters, N. C. et al. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog. 10, e1004538 (2014). A comprehensive study of the CD4+LY6C+ effector T cells that provide rapid protection against Leishmania infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Colpitts, S. L., Dalton, N. M. & Scott, P. IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and Th1 effector cells during Leishmania major infection. J. Immunol. 182, 5702–5711 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zaph, C., Uzonna, J., Beverley, S. M. & Scott, P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat. Med. 10, 1104–1110 (2004). This paper provides the first demonstration that CD4+ T CM cells can be maintained long-term in the absence of persistent parasites.

    Article  CAS  PubMed  Google Scholar 

  59. Colpitts, S. L. & Scott, P. The early generation of a heterogeneous CD4+ T cell response to Leishmania major. J. Immunol. 185, 2416–2423 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015). This paper provides the first demonstration that infection with L. major generates skin-resident CD4+ T cells that promote immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muller, I., Kropf, P., Etges, R. J. & Louis, J. A. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect. Immun. 61, 3730–3738 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bertholet, S. et al. Antigen requirements for efficient priming of CD8+ T cells by Leishmania major-infected dendritic cells. Infect. Immun. 73, 6620–6628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gurunathan, S. et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J. Exp. Med. 186, 1137–1147 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jayakumar, A. et al. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia). PLoS Negl. Trop. Dis. 5, e1204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rhee, E. G. et al. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J. Exp. Med. 195, 1565–1573 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Colmenares, M., Kima, P. E., Samoff, E., Soong, L. & McMahon-Pratt, D. Perforin and γ interferon are critical CD8+ T-cell-mediated responses in vaccine-induced immunity against Leishmania amazonensis infection. Infect. Immun. 71, 3172–3182 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ives, A. et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331, 775–778 (2011). This report is the first to describe how a Leishmania RNA virus influences the severity of Leishmania infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tarr, P. I. et al. LR1: a candidate RNA virus of Leishmania. Proc. Natl Acad. Sci. USA 85, 9572–9575 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bourreau, E. et al. Presence of Leishmania RNA virus 1 in Leishmania guyanensis increases the risk of first-line treatment failure and symptomatic relapse. J. Infect. Dis. 213, 105–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Adaui, V. et al. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by Leishmania braziliensis in Peru and Bolivia. J. Infect. Dis. 213, 112–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Cantanhede, L. M. et al. Further evidence of an association between the presence of Leishmania RNA virus 1 and the mucosal manifestations in tegumentary leishmaniasis patients. PLoS Negl. Trop. Dis. 9, e0004079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Salinas, G., Zamora, M., Stuart, K. & Saravia, N. Leishmania RNA viruses in Leishmania of the Viannia subgenus. Am. J. Trop. Med. Hyg. 54, 425–429 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Pereira, L. et al. Severity of tegumentary leishmaniasis is not exclusively associated with Leishmania RNA virus 1 infection in Brazil. Mem. Inst. Oswaldo Cruz 108, 665–667 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  75. McElrath, M. J., Kaplan, G., Nusrat, A. & Cohn, Z. A. Cutaneous leishmaniasis. The defect in T cell influx in BALB/c mice. J. Exp. Med. 165, 546–559 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. de Moura, T. R. et al. Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania braziliensis. Infect. Immun. 73, 5827–5834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arredondo, B. & Perez, H. Alterations of the immune response associated with chronic experimental leishmaniasis. Infect. Immun. 25, 16–22 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nasseri, M. & Modabber, F. Z. Generalized infection and lack of delayed hypersensitivity in BALB/c mice infected with Leishmania tropica major. Infect. Immun. 26, 611–614 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sadick, M. D. et al. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon γ-independent mechanism. J. Exp. Med. 171, 115–127 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Kane, M. M. & Mosser, D. M. The role of IL-10 in promoting disease progression in leishmaniasis. J. Immunol. 166, 1141–1147 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Anderson, C. F., Oukka, M., Kuchroo, V. J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miles, S. A., Conrad, S. M., Alves, R. G., Jeronimo, S. M. & Mosser, D. M. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J. Exp. Med. 201, 747–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones, D. E., Buxbaum, L. U. & Scott, P. IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J. Immunol. 165, 364–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Petritus, P. M., Manzoni-de-Almeida, D., Gimblet, C., Gonzalez Lombana, C. & Scott, P. Leishmania mexicana induces limited recruitment and activation of monocytes and monocyte-derived dendritic cells early during infection. PLoS Negl. Trop. Dis. 6, e1858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soong, L. Modulation of dendritic cell function by Leishmania parasites. J. Immunol. 180, 4355–4360 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Franca-Costa, J. et al. Arginase I, polyamine, and prostaglandin E2 pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis. J. Infect. Dis. 211, 426–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Wilhelm, P. et al. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J. Immunol. 166, 4012–4019 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Vieira, L. Q. et al. Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J. Immunol. 157, 827–835 (1996).

    CAS  PubMed  Google Scholar 

  89. Melby, P. C. et al. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect. Immun. 62, 837–842 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ribeiro de Jesus, A., Luna, T., Pacheco de Almeida, R., Machado, P. R. & Carvalho, E. M. Pentoxifylline down modulate in vitro T cell responses and attenuate pathology in Leishmania and HTLV-I infections. Int. Immunopharmacol. 8, 1344–1353 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Lopez Kostka, S. et al. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J. Immunol. 182, 3039–3046 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Faria, D. R. et al. Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect. Immun. 73, 7853–7859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gonzalez-Lombana, C. et al. IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection. PLoS Pathog. 9, e1003243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bacellar, O. et al. Interleukin 17 production among patients with American cutaneous leishmaniasis. J. Infect. Dis. 200, 75–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Boaventura, V. S. et al. Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur. J. Immunol. 40, 2830–2836 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Brodskyn, C. I., Barral, A., Boaventura, V., Carvalho, E. & Barral-Netto, M. Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis. J. Immunol. 159, 4467–4473 (1997).

    CAS  PubMed  Google Scholar 

  97. Faria, D. R. et al. Recruitment of CD8+ T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis. Parasite Immunol. 31, 432–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Santos Cda, S. et al. CD8+ granzyme B+-mediated tissue injury versus CD4+IFNγ+-mediated parasite killing in human cutaneous leishmaniasis. J. Invest. Dermatol. 133, 1533–1540 (2013). This work describes the cytolytic role of CD8+ T cells in L. braziliensis -infected patients.

    Article  CAS  PubMed  Google Scholar 

  99. Cardoso, T. M. et al. Protective and pathological functions of CD8+ T cells in Leishmania braziliensis infection. Infect. Immun. 83, 898–906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Novais, F. O. et al. Genomic profiling of human Leishmania braziliensis lesions identifies transcriptional modules associated with cutaneous immunopathology. J. Invest. Dermatol. 135, 94–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Novais, F. O. et al. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog. 9, e1003504 (2013). This paper is the first to demonstrate that cytolytic CD8+ T cells kill infected cells in a perforin-dependent manner, leading to severe pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Crosby, E. J., Goldschmidt, M. H., Wherry, E. J. & Scott, P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog. 10, e1003970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Da-Cruz, A. M., Oliveira-Neto, M. P., Bertho, A. L., Mendes-Aguiar, C. O. & Coutinho, S. G. T cells specific to Leishmania and other nonrelated microbial antigens can migrate to human leishmaniasis skin lesions. J. Invest. Dermatol. 130, 1329–1336 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Dotiwala, F. et al. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 22, 210–216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kostka, S. L., Knop, J., Konur, A., Udey, M. C. & von Stebut, E. Distinct roles for IL-1 receptor type I signaling in early versus established Leishmania major infections. J. Invest. Dermatol. 126, 1582–1589 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Lima-Junior, D. S. et al. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat. Med. 19, 909–915 (2013). This study indicates that inflammasome-dependent IL-1β helps control some Leishmania spp. infections via an NO-dependent pathway.

    Article  CAS  PubMed  Google Scholar 

  107. von Stebut, E. et al. Interleukin 1α promotes Th1 differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J. Exp. Med. 198, 191–199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kautz-Neu, K. et al. A role for leukocyte-derived IL-1RA in DC homeostasis revealed by increased susceptibility of IL-1RA-deficient mice to cutaneous leishmaniasis. J. Invest. Dermatol. 131, 1650–1659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fernandez-Figueroa, E. A. et al. Disease severity in patients infected with Leishmania mexicana relates to IL-1β. PLoS Negl. Trop. Dis. 6, e1533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ikejima, T., Okusawa, S., Ghezzi, P., van der Meer, J. W. & Dinarello, C. A. Interleukin-1 induces tumor necrosis factor (TNF) in human peripheral blood mononuclear cells in vitro and a circulating TNF-like activity in rabbits. J. Infect. Dis. 162, 215–223 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Gurung, P. et al. An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis. J. Clin. Invest. 125, 1329–1338 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bryson, K. J., Wei, X. Q. & Alexander, J. Interleukin-18 enhances a Th2 biased response and susceptibility to Leishmania mexicana in BALB/c mice. Microbes Infect. 10, 834–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Xu, D. et al. IL-18 induces the differentiation of Th1 or Th2 cells depending upon cytokine milieu and genetic background. Eur. J. Immunol. 30, 3147–3156 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Shio, M. T., Christian, J. G., Jung, J. Y., Chang, K. P. & Olivier, M. PKC/ROS-mediated NLRP3 inflammasome activation is attenuated by Leishmania zinc-metalloprotease during Infection. PLoS Negl. Trop. Dis. 9, e0003868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lefevre, L. et al. The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum. Immunity 38, 1038–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Campanelli, A. P. et al. CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J. Infect. Dis. 193, 1313–1322 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Bourreau, E. et al. Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect. Immun. 77, 1465–1474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodriguez-Pinto, D. et al. Regulatory T cells in the pathogenesis and healing of chronic human dermal leishmaniasis caused by Leishmania (Viannia) species. PLoS Negl. Trop. Dis. 6, e1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suffia, I. J., Reckling, S. K., Piccirillo, C. A., Goldszmid, R. S. & Belkaid, Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J. Exp. Med. 203, 777–788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203, 2451–2460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Okwor, I., Liu, D., Beverley, S. M. & Uzonna, J. E. Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proc. Natl Acad. Sci. USA 106, 13951–13956 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mendez, S., Reckling, S. K., Piccirillo, C. A., Sacks, D. & Belkaid, Y. Role for CD4+ CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J. Exp. Med. 200, 201–210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ji, J., Masterson, J., Sun, J. & Soong, L. CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J. Immunol. 174, 7147–7153 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Ehrlich, A. et al. The immunotherapeutic role of regulatory T cells in Leishmania (Viannia) panamensis infection. J. Immunol. 193, 2961–2970 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Costa, D. L. et al. Tr-1-like CD4+CD25CD127−/lowFOXP3 cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis. J. Infect. Dis. 211, 708–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Salhi, A. et al. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J. Immunol. 180, 6139–6148 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012). This study is the first to show that skin commensals can exacerbate pathology in cutaneous leishmaniasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peters, N. C. et al. Vector transmission of leishmania abrogates vaccine-induced protective immunity. PLoS Pathog. 5, e1000484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Khamesipour, A. et al. Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23, 3642–3648 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. The Working Group on Research Priorities for Development of Leishmaniasis Vaccines et al. Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl. Trop. Dis. 5, e943 (2011).

  132. Noazin, S. et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine 26, 6759–6767 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Mou, Z. et al. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells. Sci. Transl. Med. 7, 310ra167 (2015). This study identifies an immunodominant antigen that provides long-lasting protection to several Leishmania spp.

    Article  CAS  PubMed  Google Scholar 

  136. Reed, S. G., Coler, R. N., Mondal, D., Kamhawi, S. & Valenzuela, J. G. Leishmania vaccine development: exploiting the host–vector–parasite interface. Expert Rev. Vaccines 15, 81–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Oliveira, F. et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci. Transl. Med. 7, 290ra90 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Anderson, C. F., Mendez, S. & Sacks, D. L. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J. Immunol. 174, 2934–2941 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. McMahon-Pratt, D. & Alexander, J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol. Rev. 201, 206–224 (2004).

    Article  PubMed  Google Scholar 

  140. Ji, J., Sun, J., Qi, H. & Soong, L. Analysis of T helper cell responses during infection with Leishmania amazonensis. Am. J. Trop. Med. Hyg. 66, 338–345 (2002).

    Article  PubMed  Google Scholar 

  141. Qi, H., Popov, V. & Soong, L. Leishmania amazonensis–dendritic cell interactions in vitro and the priming of parasite-specific CD4+ T cells in vivo. J. Immunol. 167, 4534–4542 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Satoskar, A., Bluethmann, H. & Alexander, J. Disruption of the murine interleukin-4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect. Immun. 63, 4894–4899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Stamm, L. M. et al. Mice with STAT6-targeted gene disruption develop a Th1 response and control cutaneous leishmaniasis. J. Immunol. 161, 6180–6188 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. King for critical reading of the manuscript and acknowledge financial support from the US National Institutes of Health (RO1 AI 106842; UO1 AI 088650; RO1 AI 125126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

CD8+ T cell killing a Leishmania-infected target cell. Live cell imaging using a spinning disc confocal microscope of cells isolated from leishmanial lesions in Rag−/− mice infected with mCherry (red)-expressing Leishmania braziliensis and reconstituted with eGFP (green) CD8+ T cells 4 weeks post infection. This movie is reproduced with permission from PLoS Pathogens (Novais, F. O. et al. 9, e1003504 (2013)). (AVI 1102 kb)

PowerPoint slides

Glossary

Delayed-type hypersensitivity

(DTH). An inflammatory response that develops 48–72 h after injection of antigen into the skin. DTH indicates that an individual has a population of T cells that make interferon-γ and recognize that antigen.

Respiratory burst

The rapid release of reactive oxygen species from immune cells during phagocytosis.

CC-chemokine receptor 2

(CCR2). A receptor that binds monocyte chemoattractant protein (CCL2) and is involved in monocyte migration from the bone marrow to inflammatory sites.

Reactive oxygen species

(ROS). Chemically reactive molecules that contain oxygen, and include superoxide anions, hydroxyl radicals and hydrogen peroxide.

Nitric oxide

(NO). A free radical that is a gas that performs several biological functions and is involved in killing pathogens by macrophages.

IL-12

A heterodimeric cytokine containing an IL-12p35 and an IL-12p40 chain that stimulates the production of interferon-γ from cells. IL-12 is crucial for the differentiation of CD4+ T helper 1 cells.

Perforin

A calcium-sensitive membranolytic protein that is found in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells.

NKG2D

(Natural killer group 2, member D). A protein expressed on the surface of activated natural killer and CD8+ T cells that binds to self-ligands that are induced following stress, development of malignancy and infection. Interactions between NKG2D and its ligands can induce lysis of the NKG2D ligand-expressing cell.

Inflammasome

An innate immune sensor that recognizes pathogens and self molecules released during tissue damage. It is a molecular complex of several proteins; once assembled, the inflammasome processes pro-interleukin-1 (pro-IL-1) and pro-IL-18 to their active forms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, P., Novais, F. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16, 581–592 (2016). https://doi.org/10.1038/nri.2016.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.72

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology