Skip to main content
Erschienen in:

Open Access 10.12.2024 | position paper

JAK2 mutations in polycythemia vera: from molecular origins to inflammatory pathways and clinical implications

verfasst von: Beatriz Bellosillo, Michael Doubek, Ciprian Tomuleasa, Martin Griesshammer, Monia Marchetti, Tomasz Sacha, Heinz Gisslinger

Erschienen in: memo - Magazine of European Medical Oncology | Sonderheft 4/2025

Summary

Polycythemia vera (PV) is a myeloproliferative neoplasm primarily driven by mutations in the JAK2 gene, most notably the V617F mutation, which occurs in nearly 97% of cases. This gain-of-function mutation overactivates the JAK-STAT pathway, a critical factor in developing the PV phenotype by stimulating excessive proliferation of the erythroblastic lineage. Diagnostic methods for PV focus on detecting the JAK2 mutation—primarily through polymerase chain reaction (PCR) and next-generation sequencing, which are essential for distinguishing PV from other disorders. The variant allele frequency (VAF) of JAK2V617F also serves as an important prognostic marker, with higher VAF linked to both increased thrombotic risk and disease progression to myelofibrosis or acute leukemia. Thus, managing allele burden is central to treatment strategies. Given the genetic complexity of PV, personalized treatment approaches are essential. Current therapies focus on JAK2 signaling, with ropeginterferon alfa-2b and JAK inhibitors as primary or secondary treatments to reduce clonal expansion and control inflammation, and aspirin to prevent thrombotic events. Emerging treatments are exploring anti-inflammatory strategies, such as anti-IL-1β antibodies, and agents targeting iron metabolism to maintain hematocrit levels without phlebotomy, potentially improving quality of life. Overall, reducing JAK2V617F burden and controlling inflammation are crucial for managing PV progression and improving patient outcomes, with ongoing research refining these therapeutic avenues to enhance long-term strategies.
Hinweise
B. Bellosillo, M. Doubek, C. Tomuleasa, M. Griesshammer, M. Marchetti, T. Sacha and H. Gisslinger contributed equally to the manuscript.

Disclosures

The expert meeting, on which this publication is based, was held in January 2024 in an entirely virtual format, supported by the logo placement of AOP Orphan Pharmaceuticals GmbH (Austria). The company had no role in the design, execution, interpretation, or writing of the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Polycythemia vera (PV) belongs to the group of classical myeloproliferative neoplasms (MPNs), also known as BCR::ABL1-negative MPNs. This group also comprises essential thrombocythemia (ET) and primary myelofibrosis (PMF). Together, these clonal hematologic disorders are characterized by increased proliferation of one or more myeloid cell lineages in the absence of dysplasia [1, 2]. PV is characterized by an acquired driver mutation of the Janus kinase 2 (JAK2) gene, which was first discovered in exon 14 (JAK2V617F) in 2005, with other mutations being described in exons 12 to 15 later on [38]. Clinically, PV is associated with an excessive production of red blood cells, platelets, and neutrophils, coupled with a significant load of disease-specific symptoms including elevated rates of vascular events and a 20-year risk for progression towards myelofibrosis or acute leukemia of approximately 16% and 4%, respectively [1, 9]. In this regard, the variant allele frequency (VAF) of the JAK2V617F mutation emerges as a critical factor influencing the outcomes of PV patients [10].
Here, we provide an overview of the molecular origins of PV as well as the inflammatory pathways and clinical implications of JAK2 mutations.

Genetic characteristics and diagnostic methods

The genetic underpinnings of PV have garnered significant attention, as they not only elucidate the pathophysiology of the disease but also guide therapeutic strategies and prognostic assessments. Central to the genetic landscape of PV is the JAK2V617F mutation in exon 14 that is identified in approximately 97% of patients [1]. This gain-of-function mutation leads to an overactivation of the JAK2 gene resulting in the constitutive activation of the JAK-STAT pathway, a critical driver of erythroid progenitor proliferation [11]. Around 30% of PV patients bear JAK2V617F mutations in homozygous state, most likely due to loss of heterozygosity [1214]. Coexistence of unmutated, heterozygous, and homozygous mutant progenitor cells result in a wide spectrum of quantitative levels of JAK2V617F that extend from minimal fractions of a percent to complete dominance at 100%, clinically quantified as allele burden or variant allele frequency (VAF) [10, 15]. Of note, the significance of JAK2 mutations extends beyond the V617F variant (Fig. 1), with mutations in exon 12 of the JAK2 gene accounting for most of the JAK2V617F-negative cases [6, 11, 16]. The outcomes of these patients resemble those of JAK2V617F-positive PV patients, with similar incidences of thrombotic events, transformation to myelofibrosis or acute myeloid leukemia and death while being associated with markedly elevated hemoglobin levels, diminished serum erythropoietin concentrations, and reduced platelet and leukocyte counts at the time of diagnosis [17, 18].
Besides the canonical and noncanonical JAK2 mutations, myeloid neoplasm-associated mutations/additional (nondriver) mutations were reported in PV patients, which highlights the complexity of the genomic landscape of PV. For completeness, alterations in the following genes have been found: SRSF2, SF3B1, U2AF1, ZRSR2 (mRNA splicing genes); TET2, DNMT3A, IDH1/2, ASXL1, EZH2 (epigenetic regulation genes); SH2B3, NF1, NRAS, KRAS, CBL, FLT3, PPM1D, ERBB (miRNA deregulation, intracellular signaling genes); NF-E2, TP53, RUNX1, CUX1, ETV6 (transcription factors) and in rare cases other MPN-driver genes (CALR, MPL) [11].
The precise detection of driver mutations is crucial for the diagnosis of PV versus secondary erythrocytosis, since the few triple-negative PV cases may harbor other mutations. In general, this can be achieved through highly sensitive single-target techniques such as quantitative reverse transcriptase–polymerase chain reaction and digital droplet PCR, or through multitarget panel assays using next-generation sequencing. These methods should have a minimal sensitivity threshold for VAF of 1% to adequately distinguish between wild-type, triple-negative cases, and those harboring other mutations ([11, 19]; Table 1) lists diagnostic methods for the detection of JAK2V617F mutations.
Table 1
Diagnostic methods for the detection of JAK2V617F mutations [2024]
Method
Sensitivity
(minimum VAF detectable) (%)
Quantitative assessment
Allele specific (AS) PCR
1–5
Real time AS PCR
0.1
+
Digital PCR
0.01
+
Melting curve analysis
5–10
Sanger sequencing
15–20
Next-generation sequencing
2–5
+
Of note, JAK2V617F mutations are not the rate-limiting step for the development of PV, which was shown by the fairly long latency between the acquisition of the mutation and manifestation of PV and the detection of the clonal hematopoiesis of indeterminate potential (CHIP) [2527] Research is ongoing to investigate factors that suppress or promote the expansion of the JAK2-mutated clone, e.g., inflammation mediated by IL-1β [25].
The genetic profile, epigenetic dysregulation, signaling cascades, DNA damage response and inflammatory pathways impact on the effectiveness of JAK inhibitors, which are a cornerstone of the management of PV. This highlights the importance of genetic testing in guiding treatment decisions and risk assessment [1, 20, 28].

Diagnostic algorithm and risk stratification

Traditional hematologic measures accompanied by the detection of genetic markers, particularly the JAK2 mutation which can be characterized by a complex coexistence of multiple clones that evolve over time, are in the center of a definitive PV diagnose and essential for informing personalized treatment strategies [1, 10, 20]. Given that virtually all patients with PV harbor JAK2 mutations and that peripheral blood and bone marrow biopsies are equally informative, the first step in approaching a PV diagnosis should include screening of the JAK2 mutation in exon 14 and exon 12 [1, 29].
Although the two major diagnostic classification systems, the international consensus classification (ICC) and the WHO fifth edition for MPN, are similar, the latter no longer requires red cell mass assessment. In more detail, the ICC diagnosis requires three major criteria to be met (1. hemoglobin/hematocrit, males above 16.5 g/dl/49%, females above 16 g/dl/48%; or red blood cell mass more than 25% above mean normal predicted values; 2. JAK2V617F or JAK2 exon 12 mutation; 3. age-adjusted hypercellularity with panmyelosis in the bone-marrow biopsy, including prominent erythroid granulocytic, and increase in pleomorphic, mature megakaryocytes without atypia) or the first two major criteria and the minor criterion (i.e., subnormal erythropoietin levels). Of note, bone marrow biopsies may not be required in males and females with hemoglobin/hematocrit levels above 18.5 g/dl/55.5% and 16.5 g/dl/49%, respectively (Table 2). Confirmation by repeat testing is required if the VAF is below 1% [19, 30]. If repeat testing confirms low VAF, careful interpretation in the context of the patient’s full clinical presentation is required, as low levels can be found in otherwise healthy individuals, represent an early stage of the disease, or indicate clonal hematopoiesis of indeterminate potential (CHIP) [31]. In case of a negative result, the PV diagnosis becomes less likely and testing for secondary erythrocytosis should be considered ([19, 30]).
Table 2
Polycythemia vera (PV) diagnostic criteria according to international consensus classification of myeloid neoplasms and acute leukemias adapted from [19]
Major/minor PV diagnostic criteria
Additional Information
Major criteria
1. Elevated hemoglobin/hematocrit or red blood cell mass
Diagnostic thresholds for hemoglobin/hematocrit: above 16.5 g/dl/49% in males and above 16 g/dl/48% in females
Diagnostic threshold for red blood cell mass: above 25% above mean normal predicted values for males and females
2. JAK2V617F or JAK2 exon 12 mutation
Confirmation by repeat testing is required if the VAF is below 1%
3. Age-adjusted hypercellularity with panmyelosis in the bone-marrow biopsy, including prominent erythroid granulocytic, and increase in pleomorphic, mature megakaryocytes without atypia
A bone marrow biopsy may not be required in males and females with hemoglobin/hematocrit levels above 18.5 g/dl/55.5% and 16.5 g/dl/49%
Minor criterion
Subnormal erythropoietin levels
In terms of survival, age remains the most important predictor in PV [32]. However, there are also age-independent factors which should not be overlooked, including abnormal karyotype, leukocytosis, and non-JAK2 mutations (e.g., TET2, SRSF2, IDH2, RUNX1, ASXL1, U2AF1, EZH2, TP53) that are included in the mutation-enhanced international prognostic systems (MIPSS) PV risk stratification tool to estimate survival outcomes [33, 34]. Furthermore, the history of any thrombosis at or prior to diagnosis also impacts the overall survival of PV patients, thus, contributing to the categorization of PV patients as either high-risk (thrombosis history or patient age above 60 years) or low-risk (no history of thrombosis, age ≤ 60 years) [1]. This nuanced approach to risk stratification that takes factors such as patient age, thrombosis history, and JAK2V617F allele burden into consideration, helps to tailor treatment strategies more effectively. Additionally, acquired mutations not only play an important role in the diagnostic algorithm but could also serve as a marker of minimal residual disease, if assessed [3537].
Regarding thrombotic risk stratification, new independent venous (VETS) and arterial (ARTS) predictive risk scores have been proposed based on differences between the molecular profile and the clinical presentation. Whereas the ARTS was shown to improve the currently recommended scores discrimination power by including four independent risk factors (i.e., age above 60 years at diagnosis, prior arterial thrombotic events, cardiovascular risk factors and mutations of TET2 or DNMT3A), the VETS that includes only two risk factors (i.e., JAK2V617F VAF ≥ 50% and prior venous thrombotic events) did not. This underscores the need for an improved pathophysiological understanding to more accurately identify PV patients at risk for venous thrombosis [38].

JAK2 mutation and inflammation

Myeloproliferative neoplasms including PV are marked by a continuous inflammatory state that is considered a major driving force for clonal evolution and disease progression to the advanced myelofibrotic stage with bone marrow failure, massive splenomegaly, and ultimately leukemic transformation [39, 40]. The JAK2V617F gain-of-function mutation leads to a constitutive activation of the JAK-STAT pathway, which promotes myeloid and megakaryocyte proliferation as well as differentiation and the production of inflammatory cytokines and chemokines. This aberrant cytokine production that includes interleukins (IL‑6, IL-1β) and tumor necrosis factor-alpha (TNFα) fosters an inflammatory microenvironment that favors disease progression and associated symptoms. These cytokines further amplify JAK-STAT signaling, creating a feedback loop that exacerbates both neoplastic growth and inflammation [4143]. Of note, certain inflammatory cytokines that are increased in patients with MPN, including TNFα and interferon α (IFNα), have demonstrated the ability to provide a selective growth benefit to cells harboring the JAK2V617F mutation compared to wild-type cells in vitro [44, 45]. Multiple studies that investigated cytokine levels in MPNs have shown correlations between reduced survival and elevated levels of GM-CSF, IFNα, IL-1β, IL‑4, IL‑5, IL-10, MCP‑1, MIP-1α, MIP-1β, and TNFα [46]. The cytokine excess may further explain symptoms commonly associated with PV that impact patient quality of life, including fatigue, night sweats, fever, bone pain, and pruritus [47, 48]. Moreover, JAK2V617F has been demonstrated to promote p53 degradation through the accumulation of HDM2 that in turn increases NFκB activity, and to induce the production of reactive oxygen species (ROS) [41, 49]. The presence of JAK2V617F, along with elevated levels of ROS, is correlated with a heightened risk of thrombosis [5054], premature atherosclerosis [46], the formation of extracellular neutrophil traps [51], ischemic heart disease [5557], and cancer [58, 59]. Studies suggested that the inflammatory marker NLR (neutrophil-to-lymphocyte ratio) serves as an independent risk factor and a novel prognostic indicator for thrombosis in patients with PV [60, 61]. The current evidence with respect to the presence of increased levels of cytokines, chemokines, and ROS in MPNs underscores the importance of targeting both the JAK-STAT pathway and inflammation, suggesting that early intervention to control inflammation could potentially delay or prevent transformation to MF.

JAK2 allele burden: clinical implications and disease dynamics

The biological behaviors of cells harboring the JAK2V617F mutation exhibit notable differences based on whether they are heterozygous (i.e., presence in a single cell as a single copy) or homozygous (i.e., presence in a single cell as a double copy) for this mutation, since the intensity of JAK2V617F signal transduction enhancement is directly correlated with the gene dosage of the mutation [15]. Mouse models engineered to express JAK2V617F have shown that progression and severity of the PV phenotype are influenced by two key factors: the level of JAK2V617F expression and the cellular context of this expression, specifically whether it occurs in hematopoietic stem cells (HSCs) or in progenitor cells [6264]. In this context, an increased JAK2V617F mutant allele burden has been correlated with pruritus, fibrotic transformation, and venous thrombosis [65, 66]. This dual dependency highlights the complex role of the JAK2V617F allele burden in the modulation of disease characteristics and underscores the importance of the cellular origin regarding the expression and impact of the mutation on disease progression.
Moreover, the JAK2V617F allele burden was shown to vary significantly between PV, masked PV (i.e., a JAK2V617F-positive entity with a phenotype mimicking ET due to isolated thrombocytosis but endogenous erythroid colony formation and histological features of PV) and ET [67]. JAK2V617F allele burden of ≥ 50% has not only been linked to more prevalent splenomegaly and circulating CD34+ cells [10] but also to a higher probability of progression to MF [10, 12, 66, 68, 69], acute leukemia, and death [70]. Interestingly, MPN patients with an elevated JAK2V617F allele burden (stratified at 26.3%, the median JAK2V617F allele burden at baseline of the investigated cohort), were shown to have a higher prevalence of concomitant chronic kidney disease and displayed unfavorable dynamics of kidney function over time. This may be attributed to chronic inflammation, which not only drives the expansion of the malignant clone in MPN but could also potentially contribute to kidney function decline through mechanisms such as fibrosis and microvascular damage [71].
In PV and ET patients who received long-term treatment with ruxolitinib and who were shown to achieve sustained JAK2V617F molecular response, this response was linked to a decreased likelihood of progression to MF. Moreover, patients who reached partial molecular response (above 50% VAF reduction) exhibited a decreased likelihood of developing secondary myelofibrosis compared to those whose JAK2V617F VAF was unaffected [72]. In several studies, peripheral blood JAK2V617F VAF above 50% was shown to correlate with higher white blood cell (WBC) count, absolute neutrophil count, hematocrit (HCT), and lower platelet count than VAF below 50% [10, 65, 66, 73]. Furthermore, patients with JAK2V617F VAF above 50% have a greater risk of developing venous thrombosis [10] that persisted even after adjustment for prior events, WBC count, and age [65, 74, 75]. Evidence from randomized perspective trials correlating response and outcomes with JAK2V617F VAF is piling up, suggesting that a VAF reduction is associated with better blood count control and lower risk of thrombosis as well as disease progression [10]. In contrast, in real-world analyses, primary therapies with phlebotomy and hydroxyurea (HU) failed to demonstrate normalization of blood cell counts in the context of reducing the risk of thrombosis, when the European LeukemiaNet (ELN) response criteria were applied [76, 77]. Taken together, achieving, and maintaining a low JAK2V617F allele burden serves as a marker for therapeutic efficacy and more favorable patient outcomes [78, 79], which was best shown in the PROUD-PV and CONTINUATION-PV studies [80, 81], PVN1 [82], COMBI [83], COMBI-II [84], and MAJIC [85] trials. This is further supported by data from the PROUD-PV/CONTINUATION-PV trial that have been presented by Kiladjian et al. at EHA 2024 in Madrid. The data indicate that molecular response is associated with prolonged event-free survival in patients with early stage PV and can effectively be achieved with ropeginterferon alfa-2b. Additionally, ropeginterferon alfa-2b treated patients spent more time in molecular response that HU/BAT-treated patients and higher JAK2V617F allele burden was associated with an increased risk of events, suggesting that depletion of the mutant clone below the current threshold for molecular response may confer further benefit. According to the extended COX proportional hazard model used by the study group, a 10% lower allele burden corresponds with an approximately 34% lower risk of events [86]. Thus, PV treatments that target the clonal expansion of JAK2V617F are essential in terms of optimal management of the risk of thrombosis and disease progression.

JAK2 mutation and fibrotic or leukemic transformation

Despite current treatments, the overactivation of the JAK2 signaling pathway accompanied by a thromboinflammatory state and a disordered HSC niche leads to more severe forms of the diseases in a subset of PV patients. The 20-year risk of PV patients transitioning to post-PV MF or AML (acute myeloid leukemia) is approximately 16% and 4%, respectively. This underlines the need for a deeper understanding of the molecular drivers of disease progression and for the concomitant detection of passenger mutations besides JAK2V617F [10, 87, 88]. Disease progression has been associated with the occurrence or intensification of thromboembolic events, major bleedings, and constitutional symptoms such as pruritus, night sweats, fever, weight loss, and fatigue. At the same time, leukocytosis, advanced age, and history of thrombosis have been found to be independent risk factors for overall survival [8992]. Regarding cytogenetics, PV patients with an abnormal karyotype at the time of diagnosis demonstrated a higher risk of disease progression and a shorter period of transformation-free survival compared with those with a normal karyotype [93]. Germline predisposition in MPN (e.g., CHST15 mutation) might also affect the disease evolution to the fibrotic or blast phases [94]. Moreover, progression may be detectable at the cellular or molecular levels as well [8992, 95].
According to the IWG-MRT consensus criteria, post-PV MF is defined by bone marrow fibrosis grade ≥ 2 (3-point scale) or ≥ 3 (4-point scale). Additionally, two minor criteria must be met, which are anemia or sustained loss of need for phlebotomy and/or cytoreductive therapy, splenomegaly, leukoerythroblastosis, and development of constitutional symptoms [96]. It has been hypothesized that the development of bone marrow fibrosis results from the progressive replacement of hematopoietic cells by reticulin fibers, which has been attributed not solely to the chronic inflammatory state induced by aberrant JAK-STAT signaling but also to the acquisition of additional somatic mutations within HSC [97, 98]. Of note, the presence of JAK2V617F mutation alone is not sufficient in a low allele burden to drive progression to MF, while a high allele burden has been linked to an increased risk of transformation [1, 10, 12, 91, 99]. In this context, additional ASXL1 mutations, for instance, which have been reported to be quite rare in PV (less than 7%) but more frequent in post-PV MF (19–40%), are suggested to play a role in disease progression and inferior survival outcomes [14, 100].
Regarding leukemic progression, the WHO defines progression to the accelerated phase in MPNs as 10–19% blasts in peripheral blood or bone marrow and the blast phase as ≥ 20% blasts [30]. In this context, TP53 mutations have been reported to occur in total in 6–8% of PV patients but in approximately 66% of MPN cases with accelerated or blast phases, and they are associated with disease progression and poor overall prognosis [101, 102]. Moreover, mutations in the RUNX1/AML1 gene were linked to leukemic transformation in MPNs [91]. Further genetic factors associated with leukemic transformation in PV include SRSF2 and IDH2 mutations [33, 91, 92, 103].
Of note, when treatments or environmental factors only partially suppress the JAK2V617F-mutated hematopoietic stem cells, a selective environment may be created that favors the emergence of cells with additional mutations. These new mutations may confer a competitive advantage to the cells, enabling them to proliferate more aggressively, and potentially lead to disease progression or the development of AML [104]. In the REVEAL study presented at ASH 2023, a multivariate analysis with stepwise model selection showed a significant association of the time from PV diagnosis to enrollment, VAF, history of thromboembolic events and HCT in JAK2V617F-positive patients with an elevated risk of progression. Of note, the WBC count was excluded as VAF and WBC counts are correlative [105]. This underscores the importance of strategies aimed at effectively controlling or eliminating the mutated clones to prevent disease progression. Considering these factors, phlebotomy, as a solitary intervention, fails to target the fundamental pathophysiological mechanisms underlying the disorder and, consequently, does not mitigate the risk of long-term sequelae, including the progression to myelofibrosis or AML which is predominantly fueled by the evolutionary expansion of the malignant hematopoietic stem cell clone [106]. Thus, comprehensive mutational screening at diagnosis and during follow-up has considerable potential to identify patients at high risk of disease progression and highlights the imperative need for innovative therapeutic strategies to address this disease more effectively.

Association of JAK2V617F mutation with cardiovascular events

Traditional cardiovascular (CV) risk factors are prevalent among patients with Philadelphia chromosome-negative MPNs, and JAK2V617F has been associated with a 12-fold increased risk of developing coronary artery disease [53, 107]. Specifically, the incidence of arterial hypertension ranges from 39% to 70% in patients with PV, while the prevalence of diabetes mellitus has been shown to be between 7% and 16%. Dyslipidemia is observed in 15–38% of this patient cohort, obesity in approximately 7.5%, and smoking is reported in 10–15% of PV cases. Notably, about three-quarters of patients with PV exhibit at least one CV risk factor, and 37.7% are affected by multiple CV risk factors [108111]. Thrombosis, predominantly arterial thrombosis, represents the most severe complication associated with cardiovascular disease (CVD) and is a critical complication in the context of PV [112, 113], underscoring the importance of comprehensive risk assessment and management in this patient population. Interestingly, the prevalence of the JAK2V617F mutation in the general population is higher than initially expected, with an approximate prevalence of 5% in individuals aged 60 years and older [114]. Crucially, the presence of JAK2V617F-positive clonal hematopoiesis has been associated with heightened rates of thrombotic events among individuals who do not have an established myeloid disorder [114, 115]. This association underscores the importance of recognizing JAK2V617F-positive clonal hematopoiesis as a significant risk factor for thrombotic events, even in the absence of MPNs, and highlights the need for further research into screening and management strategies for individuals harboring this mutation.
In a Danish case–control study with 538 ischemic stroke patients, 11.3% had a JAK2V617F mutation. In comparison to age- and sex-matched controls (1613 patients) without ischemic cerebrovascular disease, there was a 2.4-fold increase in the odds of harboring the JAK2V617F mutation [116]. These observations emphasize the necessity of implementing systematic screening for the JAK2V617F mutation in patients experiencing ischemic stroke and other thrombotic events [116118]. Overall, such an approach has the potential to significantly benefit individuals with undiagnosed or precursor stages of MPNs which CHIP precedes for decades, as these patients may endure recurrent, debilitating, and potentially fatal thrombotic episodes several years prior to receiving an MPN diagnosis. In this context, it must also be mentioned that the appropriate management of conventional cardiovascular risk factors, such as arterial hypertension, dyslipidemia, smoking, obesity, and diabetes, is critical, especially since about three-quarters of PV patients possess at least one CV risk factor and approximately 38% have more than one CV risk factor [110, 111, 119]. As highlighted by Benevolo et al., these modifiable risk factors can significantly influence thrombotic outcomes, and early intervention may therefore help reduce the additional cardiovascular risk posed by the hematological disease [119].
In this regard, an interesting patient case of a 50-year-old male who suffered from daily angina pectoris attacks despite optimal medication for CVD (i.e., aspirin and atorvastatin) after the implantation of three stents in 2019 should be mentioned. In 2021, he received another stent and balloon angioplasty but angina pectoris persisted. Thus, the JAK2V617F allele burden was determined at 0.018%, whereupon an off-label ropeginterferon alfa-2b treatment was initiated at 125 µg every other week. After 2 weeks, the cardiac symptoms decreased, and after 7 weeks, the JAK2V617F mutation was no longer detectable [117]. However, it is a matter of debate whether such a small change in VAF could explain this outcome. Nevertheless, another 5 patients with MPNs including 3 cases of PV, 1 case of masked PV, and 1 case of ET presented with severe ischemic heart disease and treatment-refractory angina pectoris [120]. Here, too, ropeginterferon alfa-2b treatment resulted in rapid improvement of angina pectoris.
Together these studies/patient cases highlight the potential impact of ropeginterferon alfa-2b on cardiovascular disease, especially angina pectoris, both in individuals with CHIP and those diagnosed with MPNs.

Treatment implications

The genetic complexity of PV underscores the need for personalized medicine approaches, with the aim of tailoring treatment based on individual genetic profiles to optimize patient outcomes and minimize complications. Regarding the thromboembolic complications which represent a major clinical challenge in the treatment of PV patients, cytoreductive treatment in addition to phlebotomy and aspirin is justified even in low-risk patients, as there is an elevated risk of thrombosis compared to the general population with or without cardiovascular risk factors (Fig. 2; [92, 121125]).
During the last 40 years, IFN-alfa has been shown to be extremely effective in lowering cell counts as well as to achieve disease modification in MPNs [126129]. This is further supported by the European LeukemiaNet 2021 recommendations that suggest that the initiation of cytoreductive therapy is warranted under certain conditions in individuals under 60 years of age who have no history of thrombotic events. These conditions include a clearly defined intolerance to phlebotomy, the presence of symptomatic and progressive splenomegaly, persistent leukocytosis (exceeding WBC of 15 × 109/L), an observed progressive increase in leukocyte count (i.e., a 100% increase from baseline if initial counts are below 10 × 109/L or a 50% increase of initial counts above 10 × 109/L), marked thrombocytosis (exceeding platelets of 1500 × 109/L), failure to maintain HCT levels necessitating frequent phlebotomies, ongoing high-risk of cardiovascular events, and a sustained high burden of symptoms. For those patients, recombinant IFN-alfa, specifically ropeginterferon alfa-2b and pegylated IFN alfa-2a, is endorsed as the preferred cytoreductive agent. Furthermore, in patients currently managed with HU who require an alternative therapeutic approach, the panel recommends considering treatment with either IFN-alfa or ruxolitinib [130, 131].
In a subgroup analysis of high- and low-risk PV patients enrolled in the REVEAL study, HCT above 45%, WBC count (above 11 × 109/L) and platelet count (above 400 × 109/L) were significantly associated with increased thromboembolic risk in high-risk patients, whereas only WBC count (above 11 × 109/L) remained associated with thromboembolic risk in low-risk patients. Thus, it is important to lower the HCT and WBC counts to optimize PV management and to reduce thrombotic complications [132]. Within this framework, the European LeukemiaNET (ELN) response criteria for cytoreductive treatment have demonstrated their effectiveness in assessing disease progression, yet raised concerns about their applicability to agents aimed at reducing thrombotic events [76]. Here, a retrospective analysis revealed that the ELN criteria for cytoreduction therapy start can identify an increased risk phenotype in both low-risk and high-risk patients treated with HU. This finding was further confirmed in HU-naïve patients [133]. Since the thrombotic burden is the major source of morbidity and mortality in PV patients, there is an unmet need for new surrogate endpoints that accurately predict the thrombotic risk. Still, the pivotal therapeutic objective in PV patients involves the regulation of HCT. Here, the CYTO-PV study underscored the significance of HCT management, demonstrating a 4-fold reduction in cardiovascular incidents and mortality when the HCT target was set below 45% compared to a 50% threshold, primarily employing phlebotomy and HU for this purpose [134]. However, the impact of controlling WBC or platelet counts on PV outcomes have been difficult to define, which is in part due to the predominant effect of HCT levels on the thrombotic risk. In real-world scenarios, where phlebotomy and HU constitute the primary therapies, the normalization of blood cell counts has not shown a clear benefit with regard to thrombosis risk reduction, even when the ELN response criteria were applied [76, 77].
The focus on HCT management was a key endpoint in the RESPONSE‑1 and RESPONSE-2 trials that compared ruxolitinib against the best available therapy, which was predominantly HU. These studies included patients requiring phlebotomy, with or without splenomegaly (RESPONSE‑1 and RESPONSE‑2, respectively). In both trials, patients receiving ruxolitinib treatment achieved superior HCT control and experienced a greater likelihood of normalized blood counts [37, 135137]. Building on these findings, the final analysis of the PROUD-PV/CONTINUATION-PV trial confirmed higher complete hematologic response rates for ropeginterferon alfa-2b versus control treatment (i.e., HU) at 6 years. Regarding the clinical response according to the ELN criteria, complete hematologic response (CHR) rates were 54.5% vs. 34.9%; a sensitivity analysis utilizing imputation of the last observation carried forward for CHR showed significantly higher response rates in the ropeginterferon alfa-2b treated patients (72.6% vs. 47.3%). This was accompanied by significantly longer treatment time in CHR (60.9% vs. 41.2%) and time with normal WBC counts (93.7% vs. 80.5%). Molecular response was achieved in 66.0% of patients treated with ropeginterferon alfa-2b compared to 19.4% of HU-treated patients. Notably, the JAK2V617F allele burden in patients treated with ropeginterferon alfa-2b was 8.5% compared to 50.4% in those treated with HU, and homozygous JAK2V617F mutations were observed in 11.6% versus 50.0%, respectively. In line with the favorable safety profile of ropeginterferon alfa-2b, these study results provide the first evidence of significantly improved probability of event-free survival in ropeginterferon alfa-2b treated patients compared to HU (0.94 vs. 0.82; log-rank test; p = 0.04) given that rates for thrombotic events, progression to myelofibrosis, AML and death were lower (5.4% vs. 16.2%) in addition to durable hematologic and molecular responses [126]. In the DALIAH trial, the 5‑year CHR rate was 22% in the pegylated IFN-treated patients compared to 24% in those receiving HU [138], which might be attributed to the intention-to-treat analysis and the high dropout rate. The American MPN-RC trial that included much more advanced PV patients with a high number of previous thrombotic events had slightly lower CHR rates (1-year CHR, 35% in pegylated IFN-treated patients vs. 37% in HU-treated patients) [139] compared to the ones reported in the PROUD-PV/CONTINUATION-PV trial (1-year CHR, 43% in ropeginterferon alfa-2b-treated patients vs. 46% in those receiving HU) [80, 126]. The higher rates of hematologic remission in PROUD-PV/CONTINUATION-PV are further supported by data of the Low-PV trial that reported a 1-year CHR rate of 84% in ropeginterferon alfa-2b-treated patients compared to 66% in patients receiving phlebotomy [78, 80, 126]. In addition to these findings on CHR, recent findings indicate that early initiation of cytoreduction in low-risk patients does not alter thrombosis-free survival (TFS), and the selection of cytoreductive agents does not affect TFS in high-risk individuals, among contemporary young ET and PV patients diagnosed before the age of 25. Crucially, the data indicate that IFN, in comparison to other cytoreductive treatments (hydroxycarbamide, anagrelide), yields significantly better myelofibrosis-free survival (MFS) [140]. These findings endorse IFN-alfa as an effective disease-modifying therapy for improving long-term MFS. Furthermore, they prompt a re-evaluation of early intervention with IFN-alfa in PV patients with the aim of potentially prioritizing the improvement of MFS [140]. In the meantime, with respect to primary cytoreductive therapy, the Onkopedia Guidelines and the NCCN Guidelines recommend IFN-alfa for all eligible patients and HU only for those who do not meet the criteria for IFN-alfa treatment [141, 142]. Based on the absence of a disease-modifying treatment, the associated burden on patients and caregivers, and the development of novel, alternative approaches, the role of phlebotomy as a primary and exclusive treatment for low-risk PV patients is diminishing. Extended follow-up is required to determine if early intervention and the significant hematologic and molecular responses observed with IFN-alfa–based therapies result in improved long-term clinical outcomes including prevention of thrombotic events and progression to MF and AML. Nevertheless, we feel free to already propose a potential treatment approach that is depicted in Fig. 3.

Future directions and research

Research of JAK2V617F pathophysiology has identified numerous new therapeutic targets for inhibiting clonal expansion in PV. Although lower in number, there are ongoing phase 2 and phase 3 trials in low-risk PV patients, e.g., those investigating ruxolitinib (NCT04644211), or ropeginterferon alfa-2b (NCT05481151, ECLIPSE PV trial). A very interesting direction of research in high-risk patients is the assessment of molecules that interfere with iron homeostasis like sapablursen, an antisense oligonucleotide against TMPRSS6 mRNA (NCT05143957), PPMX-T003, a human monoclonal antibody for transferrin receptor 1 (NCT05074550), and rusfertide, a hepcidin mimetic (NCT04767802, PACIFIC trial; NCT05210790, VERIFY trial). In the PACIFIC trial, HCT levels were successfully reduced below 45% without phlebotomy in all 16 phlebotomy-naïve PV patients [143]. Furthermore, in patients whose HCT levels were not adequately controlled by phlebotomy with or without cytoreductive therapy, rusfertide significantly decreased the average number of phlebotomies from 4.63 in the 28 weeks prior to enrollment to 0.43 during treatment [144]. These promising results suggest that consistent HCT control with rusfertide may decrease thrombotic risk compared to intermittent phlebotomy [143, 144]. However, as these agents primarily affect the iron metabolism, more comprehensive studies with extended follow-up are necessary in PV patients. Moreover, studies are testing the effect of an MDM2 inhibitor (idasanutlin, NCT03287245; KRT-232, NCT03669965), an HDAC inhibitor (givinostat, NCT01761968), an LSD1 inhibitor (IMG-7289, NCT04262141) and the combination of a PI3Kδ inhibitor (TGR-1202) with ruxolitinib (NCT02493530). Ruxolitinib is further tested in the RUxO-BEAT trial (NCT02577926), as well as the MITHRIDATE trial (NCT04116502). More information on ropeginterferon alfa-2b is obtained in PV patients with intolerance or resistance to HU (NCT05485948), and the long-term safety and efficacy of this drug is tested in PV patients who have already been treated with ropeginterferon alfa-2b for 52 weeks (NCT04655092). Interestingly, the impact and the risks of using direct oral anticoagulants (rivaroxaban or apixaban) instead of aspirin is tested in the AVAJAK trial (NCT085198960).
Promising findings have also emerged from in vivo studies evaluating an anti-IL-1β antibody alone or in combination with ruxolitinib, which suppresses key inflammatory signaling pathways and could, thus, have beneficial effects on the clinical course [146]. In this context, anti-IL-1R1 antibodies markedly decreased WBC counts, splenomegaly, and bone marrow fibrosis in homozygous JAK2V617F-positive mice [147]. Direct elimination of JAK2V617F stem cells is being evaluated in vitro and in vivo in mouse models [148].

Conclusion

The discovery of the JAK2V617F mutation in 2005 has shed light on the mechanisms behind the overproduction of red blood cells, platelets, and neutrophils, as well as the distinct characteristics of JAK2V617F-heterozygote and -homozygote cells and their clonal growth characteristics in polycythemia vera (PV). This has finally led to a shift in how medical professionals are approaching the assessment and management of PV. Today, there is an emphasis on risk assessment in PV that goes beyond traditional blood count metrics to also include the specific impact of the JAK2V617F allele burden, which influences both thrombosis risk and disease progression.
Several clinical trials highlighted in this review have directly linked reduction in variant allele frequency (VAF) to improved patient outcomes in PV. Specifically, lowering VAF has been shown to improve blood count control, reduce the risk of thrombosis, and slow disease progression, thus, underscoring the critical role of VAF reduction in the management of PV. Vice versa, treatments that neither target the clonal expansion of JAK2V617F nor decrease JAK2V617F VAF are not fully addressing the risks of thrombosis and disease progression. Here, critical opportunities for the implementation of disease-modifying therapies are missed. However, PV treatment requires prolonged administration to achieve molecular responses, which raises concerns about off-target effects, tolerability, immune suppression, and the potential for the development of cancer. In this context, continued exposure to treatments that place JAK2V617F hematopoietic stem cells (HSCs) under selection stress without effectively suppressing clonal growth may select for mutations that drive disease progression or even the development of AML.
As the body of evidence is growing with the maturation of data from recently authorized medications and as more trial outcomes are becoming available for novel therapies, it is anticipated that treatment algorithms will evolve even further, with a specific focus on low-risk patients. Encouraging findings are being reported from investigational agents in phase 2 trials, and there is considerable anticipation for the results of ongoing and concluded phase 3 studies in PV. In recent years, the scientific community’s knowledge on JAK2 mutations in PV including their impact on clinical outcomes has significantly increased, although our clinical and research objectives should focus even more stringently on the improvement of patient prognosis and the monitoring of clonal evolution.
Moreover, considering the association of JAK2V617F-mediated clonal hematopoiesis with various types of cardiovascular diseases that carry high incidence risks, the identification of JAK2V617F-positive individuals could serve as a novel precision medicine approach to stratify and reduce the risk of cardiovascular events.
Ultimately, through the understanding of these molecular origins we will pave the way for more effective therapies giving PV patients and those with clonal hematopoiesis of indeterminate potential (CHIP) the best chance to live a long and normal life without the burden brought about by their medical condition.

Conflict of interest

B. Bellosillo: Astra-Zeneca: consultancy, speaker bureau, research grant, Janssen: consultancy, speaker bureau, Merck-Serono: speaker bureau, Novartis: consultancy, speaker bureau, Roche: speaker bureau, research grant ThermoFisher: speaker bureau, research grant, Pfizer: speaker bureau. M. Doubek: AbbVie, AOP Orphan, AstraZeneca, Johnson and Johnson, GSK consultancy and speaker bureau. M. Griesshammer: Amgen, AOP Orphan, Novartis, BMS, AbbVie, Pfizer, Roche, Janssen, Gilead, AstraZeneca, Sierra, Lilly, GSK. M. Marchetti: GILEAD: consultancy, NOVARTIS: consultancy, speaker bureau, MSD: speaker bureau. T. Sacha: AOP Orphan, Novartis, GSK consultancy and speaker bureau. H. Gisslinger: AOP Orphan, Novartis, BMS and GSK consultancy and speaker bureau. C. Tomuleasa declares that he has no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:1465–87.PubMedCrossRef Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:1465–87.PubMedCrossRef
2.
Zurück zum Zitat Griesshammer M, Sadjadian PT. BCR-ABL1-negative myeloproliferative neoplasms: a review of JAK inhibitors in the therapeutic armamentarium. Expert Opin Pharmacother. 2017;18:1929–38.PubMedCrossRef Griesshammer M, Sadjadian PT. BCR-ABL1-negative myeloproliferative neoplasms: a review of JAK inhibitors in the therapeutic armamentarium. Expert Opin Pharmacother. 2017;18:1929–38.PubMedCrossRef
3.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS, Teo S‑S, Tiedt R, Passweg JR, et al. A Gain-of-Function Mutation of JAK 2 in Myeloproliferative Disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef Kralovics R, Passamonti F, Buser AS, Teo S‑S, Tiedt R, Passweg JR, et al. A Gain-of-Function Mutation of JAK 2 in Myeloproliferative Disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef
4.
Zurück zum Zitat James C, Ugo V, Le Couédic J‑P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK 2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef James C, Ugo V, Le Couédic J‑P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK 2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef
5.
Zurück zum Zitat Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK 2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK 2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef
6.
Zurück zum Zitat Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK 2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N Engl J Med. 2007;356:459–68.PubMedPubMedCentralCrossRef Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK 2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N Engl J Med. 2007;356:459–68.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK 2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRef Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK 2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRef
8.
Zurück zum Zitat Lee T‑S, Ma W, Zhang X, Kantarjian H, Albitar M. Structural effects of clinically observed mutations in JAK 2 exons 13–15: comparison with V617F and exon 12 mutations. BMC Struct Biol. 2009;9:58.PubMedPubMedCentralCrossRef Lee T‑S, Ma W, Zhang X, Kantarjian H, Albitar M. Structural effects of clinically observed mutations in JAK 2 exons 13–15: comparison with V617F and exon 12 mutations. BMC Struct Biol. 2009;9:58.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Duminuco A, Harrington P, Harrison C, Curto-Garcia N. Polycythemia Vera: Barriers to and Strategies for Optimal Management. Blood Lymphat Cancer. 2023;13:77–90.PubMedPubMedCentralCrossRef Duminuco A, Harrington P, Harrison C, Curto-Garcia N. Polycythemia Vera: Barriers to and Strategies for Optimal Management. Blood Lymphat Cancer. 2023;13:77–90.PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Regimbeau M, Mary R, Hermetet F, Girodon F. Genetic Background of Polycythemia Vera. Genes (basel). 2022;13:637.PubMedCrossRef Regimbeau M, Mary R, Hermetet F, Girodon F. Genetic Background of Polycythemia Vera. Genes (basel). 2022;13:637.PubMedCrossRef
12.
Zurück zum Zitat Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.PubMedCrossRef Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.PubMedCrossRef
13.
Zurück zum Zitat Passamonti F, Rumi E, Pietra D, Porta MGD, Boveri E, Pascutto C, et al. Relation between JAK 2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood. 2006;107:3676–82.PubMedCrossRef Passamonti F, Rumi E, Pietra D, Porta MGD, Boveri E, Pascutto C, et al. Relation between JAK 2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood. 2006;107:3676–82.PubMedCrossRef
14.
Zurück zum Zitat Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.PubMedPubMedCentralCrossRef Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Vannucchi AM, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia. 2007;21:1952–9.PubMedCrossRef Vannucchi AM, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia. 2007;21:1952–9.PubMedCrossRef
16.
Zurück zum Zitat Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32:2601–13.PubMedCrossRef Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32:2601–13.PubMedCrossRef
17.
Zurück zum Zitat Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, et al. Somatic mutations of JAK 2 exon 12 in patients with JAK 2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111:1686–9.PubMedCrossRef Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, et al. Somatic mutations of JAK 2 exon 12 in patients with JAK 2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111:1686–9.PubMedCrossRef
18.
Zurück zum Zitat Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK 2 exon 12 mutations. Blood. 2011;117:2813–6.PubMedCrossRef Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK 2 exon 12 mutations. Blood. 2011;117:2813–6.PubMedCrossRef
19.
Zurück zum Zitat Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H‑M, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.PubMedPubMedCentralCrossRef Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H‑M, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140:2228–47.PubMedPubMedCentralCrossRef Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140:2228–47.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Loscocco GG, Coltro G, Guglielmelli P, Vannucchi AM. Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells. 2021;10:1962.PubMedPubMedCentralCrossRef Loscocco GG, Coltro G, Guglielmelli P, Vannucchi AM. Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells. 2021;10:1962.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Guglielmelli P, Pietra D, Pane F, Pancrazzi A, Cazzola M, Vannucchi AM, et al. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders—A consensus project of the Italian Society of Hematology. Leuk Res. 2017;58:63–72.PubMedCrossRef Guglielmelli P, Pietra D, Pane F, Pancrazzi A, Cazzola M, Vannucchi AM, et al. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders—A consensus project of the Italian Society of Hematology. Leuk Res. 2017;58:63–72.PubMedCrossRef
23.
Zurück zum Zitat Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK 2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27:2032–9.PubMedPubMedCentralCrossRef Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK 2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27:2032–9.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Gong JZ, Cook JR, Greiner TC, Hedvat C, Hill CE, Lim MS, et al. Laboratory Practice Guidelines for Detecting and Reporting JAK 2 and MPL Mutations in Myeloproliferative Neoplasms. J Mol Diagnostics. 2013;15:733–44.CrossRef Gong JZ, Cook JR, Greiner TC, Hedvat C, Hill CE, Lim MS, et al. Laboratory Practice Guidelines for Detecting and Reporting JAK 2 and MPL Mutations in Myeloproliferative Neoplasms. J Mol Diagnostics. 2013;15:733–44.CrossRef
25.
Zurück zum Zitat Rai S, Zhang Y, Grockowiak E, Kimmerlin Q, Hansen N, Stoll CB, et al. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK 2-mutant hematopoietic stem cells. Blood Adv. 2024. Rai S, Zhang Y, Grockowiak E, Kimmerlin Q, Hansen N, Stoll CB, et al. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK 2-mutant hematopoietic stem cells. Blood Adv. 2024.
26.
Zurück zum Zitat Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, et al. Reconstructing the Lineage Histories and Differentiation Trajectories of Individual Cancer Cells in Myeloproliferative Neoplasms. Cell Stem Cell. 2021;28:514–523:e9. Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, et al. Reconstructing the Lineage Histories and Differentiation Trajectories of Individual Cancer Cells in Myeloproliferative Neoplasms. Cell Stem Cell. 2021;28:514–523:e9.
27.
Zurück zum Zitat Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:162–8.PubMedCrossRef Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:162–8.PubMedCrossRef
28.
Zurück zum Zitat Greenfield G, McPherson S, Mills K, McMullin MF. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. J Transl Med. 2018;16:360.PubMedPubMedCentralCrossRef Greenfield G, McPherson S, Mills K, McMullin MF. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. J Transl Med. 2018;16:360.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A. Prevalence and clinicopathologic correlates of JAK 2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007;21:1960–3.PubMedCrossRef Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A. Prevalence and clinicopathologic correlates of JAK 2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007;21:1960–3.PubMedCrossRef
30.
Zurück zum Zitat Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.PubMedPubMedCentralCrossRef Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Babarović E, Marijić B, Vranić L, Ban J, Valković T, Hadžisejdić I. A Comparison of Bone Marrow Morphology and Peripheral Blood Findings in Low and High Level JAK 2 V617F Allele Burden. Diagnostics. 2023;(13):2086. Babarović E, Marijić B, Vranić L, Ban J, Valković T, Hadžisejdić I. A Comparison of Bone Marrow Morphology and Peripheral Blood Findings in Low and High Level JAK 2 V617F Allele Burden. Diagnostics. 2023;(13):2086.
32.
Zurück zum Zitat Szuber N, Vallapureddy RR, Penna D, Lasho TL, Finke C, Hanson CA, et al. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol. 2018;93:1474–84.PubMedCrossRef Szuber N, Vallapureddy RR, Penna D, Lasho TL, Finke C, Hanson CA, et al. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol. 2018;93:1474–84.PubMedCrossRef
33.
Zurück zum Zitat Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291–302.PubMedCrossRef Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291–302.PubMedCrossRef
34.
Zurück zum Zitat Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379:1416–30.PubMedPubMedCentralCrossRef Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379:1416–30.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Haslam K, Langabeer SE. Monitoring Minimal Residual Disease in the Myeloproliferative Neoplasms: Current Applications and Emerging Approaches. Biomed Res Int. 2016;2016:1–6.CrossRef Haslam K, Langabeer SE. Monitoring Minimal Residual Disease in the Myeloproliferative Neoplasms: Current Applications and Emerging Approaches. Biomed Res Int. 2016;2016:1–6.CrossRef
36.
Zurück zum Zitat Allam S, Nasr K, Khalid F, Shah Z, Khan Suheb MZ, Mulla S, et al. Liquid biopsies and minimal residual disease in myeloid malignancies. Front Oncol. 2023;13. Allam S, Nasr K, Khalid F, Shah Z, Khan Suheb MZ, Mulla S, et al. Liquid biopsies and minimal residual disease in myeloid malignancies. Front Oncol. 2023;13.
37.
Zurück zum Zitat Kiladjian J‑J, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia. 2022;36:1408–11.PubMedPubMedCentralCrossRef Kiladjian J‑J, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia. 2022;36:1408–11.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Pasquer H, Daltro de Oliveira R, Vasseur L, Soret-Dulphy J, Maslah N, Zhao L‑P, et al. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia. 2023;. Pasquer H, Daltro de Oliveira R, Vasseur L, Soret-Dulphy J, Maslah N, Zhao L‑P, et al. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia. 2023;.
39.
Zurück zum Zitat Koschmieder S, Chatain N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. 2020;42:100711.PubMedCrossRef Koschmieder S, Chatain N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. 2020;42:100711.PubMedCrossRef
40.
Zurück zum Zitat Skov V, Thomassen M, Kjær L, Ellervik C, Larsen MK, Knudsen TA, et al. Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS ONE. 2022;17:e270669.PubMedPubMedCentralCrossRef Skov V, Thomassen M, Kjær L, Ellervik C, Larsen MK, Knudsen TA, et al. Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS ONE. 2022;17:e270669.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, et al. Biological drivers of clinical phenotype in myelofibrosis. Leukemia. 2023;37:255–64.PubMedCrossRef Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, et al. Biological drivers of clinical phenotype in myelofibrosis. Leukemia. 2023;37:255–64.PubMedCrossRef
42.
Zurück zum Zitat Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13.PubMedPubMedCentralCrossRef Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.PubMedCrossRef Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.PubMedCrossRef
44.
Zurück zum Zitat Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, et al. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell. 2021;28:502–513:e6. Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, et al. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell. 2021;28:502–513:e6.
45.
Zurück zum Zitat Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.PubMedPubMedCentralCrossRef Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol. 2021;12. Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol. 2021;12.
47.
Zurück zum Zitat Cuthbert D, Stein BL. Polycythemia Vera-Associated Complications: Pathogenesis, Clinical Manifestations, And Effects On Outcomes. J Blood Med. 2019;10:359–71.PubMedPubMedCentralCrossRef Cuthbert D, Stein BL. Polycythemia Vera-Associated Complications: Pathogenesis, Clinical Manifestations, And Effects On Outcomes. J Blood Med. 2019;10:359–71.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366:799–807.PubMedPubMedCentralCrossRef Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366:799–807.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Marty C, Lacout C, Droin N, Le Couédic J‑P, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia. 2013;27:2187–95.PubMedCrossRef Marty C, Lacout C, Droin N, Le Couédic J‑P, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia. 2013;27:2187–95.PubMedCrossRef
50.
Zurück zum Zitat Sørensen AL, Hasselbalch HC, Bjørn ME, Nielsen CH, Cordua S, Skov V, et al. Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biol. 2021;41:101895.PubMedPubMedCentralCrossRef Sørensen AL, Hasselbalch HC, Bjørn ME, Nielsen CH, Cordua S, Skov V, et al. Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biol. 2021;41:101895.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10.
52.
Zurück zum Zitat Bjørn ME, Hasselbalch HC. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediators Inflamm. 2015;2015:1–11.CrossRef Bjørn ME, Hasselbalch HC. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediators Inflamm. 2015;2015:1–11.CrossRef
53.
Zurück zum Zitat Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood. 2021;137:1145–53.PubMedPubMedCentralCrossRef Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood. 2021;137:1145–53.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137:2152–60.PubMedCrossRef Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137:2152–60.PubMedCrossRef
55.
Zurück zum Zitat Sabbatino F, Conti V, Liguori L, Polcaro G, Corbi G, Manzo V, et al. Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life. 2021;11:105.PubMedPubMedCentralCrossRef Sabbatino F, Conti V, Liguori L, Polcaro G, Corbi G, Manzo V, et al. Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life. 2021;11:105.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Climent M, Viggiani G, Chen Y‑W, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci. 2020;21:4370.PubMedPubMedCentralCrossRef Climent M, Viggiani G, Chen Y‑W, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci. 2020;21:4370.PubMedPubMedCentralCrossRef
58.
59.
Zurück zum Zitat Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L, Bojesen SE. The JAK 2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica. 2011;96:450–3.PubMedCrossRef Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L, Bojesen SE. The JAK 2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica. 2011;96:450–3.PubMedCrossRef
60.
Zurück zum Zitat Wang Z, Liu W, Wang D, Yang E, Li Y, Li Y, et al. TET2 Mutation May Be More Valuable in Predicting Thrombosis in ET Patients Compared to PV Patients: A Preliminary Report. J Clin Med. 2022;11:6615.PubMedPubMedCentralCrossRef Wang Z, Liu W, Wang D, Yang E, Li Y, Li Y, et al. TET2 Mutation May Be More Valuable in Predicting Thrombosis in ET Patients Compared to PV Patients: A Preliminary Report. J Clin Med. 2022;11:6615.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Carobbio A, Vannucchi AM, De Stefano V, Masciulli A, Guglielmelli P, Loscocco GG, et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022;12:28.PubMedPubMedCentralCrossRef Carobbio A, Vannucchi AM, De Stefano V, Masciulli A, Guglielmelli P, Loscocco GG, et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022;12:28.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Mansier O, Kilani B, Guitart AV, Guy A, Gourdou-Latyszenok V, Marty C, et al. Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells. Blood. 2019;134:2383–7.PubMedCrossRef Mansier O, Kilani B, Guitart AV, Guy A, Gourdou-Latyszenok V, Marty C, et al. Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells. Blood. 2019;134:2383–7.PubMedCrossRef
63.
Zurück zum Zitat Mullally A, Poveromo L, Schneider RK, Al-Shahrour F, Lane SW, Ebert BL. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood. 2012;120:166–72.PubMedPubMedCentralCrossRef Mullally A, Poveromo L, Schneider RK, Al-Shahrour F, Lane SW, Ebert BL. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood. 2012;120:166–72.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Benlabiod C, Dagher T, Marty C, Villeval J‑L. Lessons from mouse models of MPN. 2022. pp. 125–85. Benlabiod C, Dagher T, Marty C, Villeval J‑L. Lessons from mouse models of MPN. 2022. pp. 125–85.
65.
Zurück zum Zitat Guglielmelli P, Loscocco GG, Mannarelli C, Rossi E, Mannelli F, Ramundo F, et al. JAK2V617F variant allele frequency >50 % identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021;11:199.PubMedPubMedCentralCrossRef Guglielmelli P, Loscocco GG, Mannarelli C, Rossi E, Mannelli F, Ramundo F, et al. JAK2V617F variant allele frequency >50 % identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021;11:199.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK 2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574–9.PubMedCrossRef Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK 2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574–9.PubMedCrossRef
67.
Zurück zum Zitat Maslah N, Soret J, Dosquet C, Vercellino L, Belkhodja C, Schlageter M‑H, et al. Masked polycythemia vera: analysis of a single center cohort of 2480 red cell masses. Haematologica. 2020;105:e95–7.PubMedPubMedCentralCrossRef Maslah N, Soret J, Dosquet C, Vercellino L, Belkhodja C, Schlageter M‑H, et al. Masked polycythemia vera: analysis of a single center cohort of 2480 red cell masses. Haematologica. 2020;105:e95–7.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK 2 V617F in polycythemia vera. Cancer. 2006;106:631–5.PubMedCrossRef Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK 2 V617F in polycythemia vera. Cancer. 2006;106:631–5.PubMedCrossRef
69.
Zurück zum Zitat Silver RT, Vandris K, Wang YL, Adriano F, Jones AV, Christos PJ, et al. JAK2V617F allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res. 2011;35:177–82.PubMedCrossRef Silver RT, Vandris K, Wang YL, Adriano F, Jones AV, Christos PJ, et al. JAK2V617F allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res. 2011;35:177–82.PubMedCrossRef
70.
Zurück zum Zitat Debureaux P‑E, Cassinat B, Soret-Dulphy J, Mora B, Verger E, Maslah N, et al. Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Adv. 2020;4:3708–15.PubMedPubMedCentralCrossRef Debureaux P‑E, Cassinat B, Soret-Dulphy J, Mora B, Verger E, Maslah N, et al. Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Adv. 2020;4:3708–15.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Lucijanic M, Veic P, Aric I, Tupek KM, Soric E, Sabljic A, et al. Higher JAK 2 V617F mutant allele burden in patients with chronic myeloproliferative neoplasms is associated with a higher prevalence of chronic kidney disease and unfavorable dynamics of kidney function over time. Ann Hematol. 2023;102:1955–6.PubMedCrossRef Lucijanic M, Veic P, Aric I, Tupek KM, Soric E, Sabljic A, et al. Higher JAK 2 V617F mutant allele burden in patients with chronic myeloproliferative neoplasms is associated with a higher prevalence of chronic kidney disease and unfavorable dynamics of kidney function over time. Ann Hematol. 2023;102:1955–6.PubMedCrossRef
72.
Zurück zum Zitat Guglielmelli P, Mora B, Gesullo F, Mannelli F, Loscocco GG, Signori L, et al. JAK 2 V617F Molecular Response to Ruxolitinib in Patients with PV and ET Is Associated with Lower Risk of Progression to Secondary Myelofibrosis. Blood. 2022;140:1788–9.CrossRef Guglielmelli P, Mora B, Gesullo F, Mannelli F, Loscocco GG, Signori L, et al. JAK 2 V617F Molecular Response to Ruxolitinib in Patients with PV and ET Is Associated with Lower Risk of Progression to Secondary Myelofibrosis. Blood. 2022;140:1788–9.CrossRef
73.
Zurück zum Zitat Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK 2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol. 2007;79:508–15.PubMedCrossRef Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK 2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol. 2007;79:508–15.PubMedCrossRef
74.
Zurück zum Zitat Soudet S, Le Roy G, Cadet E, Michaud A, Morel P, Marolleau JP, et al. JAK 2 allele burden is correlated with a risk of venous but not arterial thrombosis. Thromb Res. 2022;211:1–5.PubMedCrossRef Soudet S, Le Roy G, Cadet E, Michaud A, Morel P, Marolleau JP, et al. JAK 2 allele burden is correlated with a risk of venous but not arterial thrombosis. Thromb Res. 2022;211:1–5.PubMedCrossRef
75.
Zurück zum Zitat Zhang Y, Zhou Y, Wang Y, Teng G, Li D, Wang Y, et al. Thrombosis among 1537 patients with JAK 2 V617F -mutated myeloproliferative neoplasms: Risk factors and development of a predictive model. Cancer Med. 2020;9:2096–105.PubMedPubMedCentralCrossRef Zhang Y, Zhou Y, Wang Y, Teng G, Li D, Wang Y, et al. Thrombosis among 1537 patients with JAK 2 V617F -mutated myeloproliferative neoplasms: Risk factors and development of a predictive model. Cancer Med. 2020;9:2096–105.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Tremblay D, Srisuwananukorn A, Ronner L, Podoltsev N, Gotlib J, Heaney ML, et al. European LeukemiaNet Response Predicts Disease Progression but Not Thrombosis in Polycythemia Vera. Hemasphere. 2022;6:e721.PubMedPubMedCentralCrossRef Tremblay D, Srisuwananukorn A, Ronner L, Podoltsev N, Gotlib J, Heaney ML, et al. European LeukemiaNet Response Predicts Disease Progression but Not Thrombosis in Polycythemia Vera. Hemasphere. 2022;6:e721.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Ronner L, Podoltsev N, Gotlib J, Heaney ML, Kuykendall AT, O’Connell C, et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood. 2020;135:1696–703.PubMedPubMedCentralCrossRef Ronner L, Podoltsev N, Gotlib J, Heaney ML, Kuykendall AT, O’Connell C, et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood. 2020;135:1696–703.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021;8:e175–84.PubMedCrossRef Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021;8:e175–84.PubMedCrossRef
79.
Zurück zum Zitat Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ghirardi A, et al. Ropeginterferon Alfa-2b Versus Standard Therapy for Low-Risk Patients with Polycythemia Vera. Final Results of Low-PV Randomized Phase II Trial. Blood. 2022;140:1797–9.CrossRef Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ghirardi A, et al. Ropeginterferon Alfa-2b Versus Standard Therapy for Low-Risk Patients with Polycythemia Vera. Final Results of Low-PV Randomized Phase II Trial. Blood. 2022;140:1797–9.CrossRef
80.
Zurück zum Zitat Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7:e196–208.PubMedCrossRef Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7:e196–208.PubMedCrossRef
81.
Zurück zum Zitat Jäger R, Gisslinger H, Fuchs E, Bogner E, Milosevic Feenstra JD, Weinzierl J, et al. Germline genetic factors influence the outcome of interferon‑α therapy in polycythemia vera. Blood. 2021;137:387–91.PubMedPubMedCentralCrossRef Jäger R, Gisslinger H, Fuchs E, Bogner E, Milosevic Feenstra JD, Weinzierl J, et al. Germline genetic factors influence the outcome of interferon‑α therapy in polycythemia vera. Blood. 2021;137:387–91.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Kiladjian J‑J, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.PubMedCrossRef Kiladjian J‑J, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.PubMedCrossRef
83.
Zurück zum Zitat Sørensen AL, Mikkelsen SU, Knudsen TA, Bjørn ME, Andersen CL, Bjerrum OW, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2020;105:2262–72.PubMedPubMedCentralCrossRef Sørensen AL, Mikkelsen SU, Knudsen TA, Bjørn ME, Andersen CL, Bjerrum OW, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2020;105:2262–72.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Sørensen ALL, Skov V, Kjær L, Eickhardt-Dalbøge CSS, Larsen MK, Nielsen C, et al. Combination Therapy with Ruxolitinib and Interferon in Newly Diagnosed Patients with Polycythemia Vera. Blood. 2022;140:6806–7.CrossRef Sørensen ALL, Skov V, Kjær L, Eickhardt-Dalbøge CSS, Larsen MK, Nielsen C, et al. Combination Therapy with Ruxolitinib and Interferon in Newly Diagnosed Patients with Polycythemia Vera. Blood. 2022;140:6806–7.CrossRef
85.
Zurück zum Zitat Harrison CN, Nangalia J, Boucher R, Jackson A, Yap C, O’Sullivan J, et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J Clin Oncol. 2023;41:3534–44.PubMedPubMedCentralCrossRef Harrison CN, Nangalia J, Boucher R, Jackson A, Yap C, O’Sullivan J, et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J Clin Oncol. 2023;41:3534–44.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Kiladjian J‑J, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. JAK2V617F MOLECULAR RESPONSE CORRELATES WITH EVENT-FREE SURVIVAL IN AN EARLY POLYCYTHEMIA VERA POPULATION. EHA congress. 2024. p. 219. Kiladjian J‑J, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. JAK2V617F MOLECULAR RESPONSE CORRELATES WITH EVENT-FREE SURVIVAL IN AN EARLY POLYCYTHEMIA VERA POPULATION. EHA congress. 2024. p. 219.
87.
Zurück zum Zitat Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci. 2021;22:5042.PubMedPubMedCentralCrossRef Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci. 2021;22:5042.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Ma X, Vanasse G, Cartmel B, Wang Y, Selinger HA. Prevalence of polycythemia vera and essential thrombocythemia. Am J Hematol. 2008;83:359–62.PubMedCrossRef Ma X, Vanasse G, Cartmel B, Wang Y, Selinger HA. Prevalence of polycythemia vera and essential thrombocythemia. Am J Hematol. 2008;83:359–62.PubMedCrossRef
89.
Zurück zum Zitat Baumeister J, Chatain N, Sofias AM, Lammers T, Koschmieder S. Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells. 2021;10:3551.PubMedPubMedCentralCrossRef Baumeister J, Chatain N, Sofias AM, Lammers T, Koschmieder S. Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells. 2021;10:3551.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Gangat N, Strand J, Li C, Wu W, Pardanani A, Tefferi A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol. 2007;138:354–8.PubMedCrossRef Gangat N, Strand J, Li C, Wu W, Pardanani A, Tefferi A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol. 2007;138:354–8.PubMedCrossRef
91.
Zurück zum Zitat Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366–e366.PubMedPubMedCentralCrossRef Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366–e366.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81.PubMedPubMedCentralCrossRef Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Tang G, Hidalgo Lopez JE, Wang SA, Hu S, Ma J, Pierce S, et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica. 2017;102:1511–8.PubMedPubMedCentralCrossRef Tang G, Hidalgo Lopez JE, Wang SA, Hu S, Ma J, Pierce S, et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica. 2017;102:1511–8.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Chen Y, Zhang Y, Wang Z, Wang Y, Luo Y, Sun N, et al. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk. Cell Death Dis. 2022;13:586.PubMedPubMedCentralCrossRef Chen Y, Zhang Y, Wang Z, Wang Y, Luo Y, Sun N, et al. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk. Cell Death Dis. 2022;13:586.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Benton CB, Tanaka M, Wilson C, Pierce S, Zhou L, Cortes J, et al. Increased likelihood of post-polycythemia vera myelofibrosis in Ph-negative MPN patients with chromosome 12 abnormalities. Leuk Res. 2015;39:419–23.PubMedPubMedCentralCrossRef Benton CB, Tanaka M, Wilson C, Pierce S, Zhou L, Cortes J, et al. Increased likelihood of post-polycythemia vera myelofibrosis in Ph-negative MPN patients with chromosome 12 abnormalities. Leuk Res. 2015;39:419–23.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment. Leukemia. 2008;22:437–8.PubMedCrossRef Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment. Leukemia. 2008;22:437–8.PubMedCrossRef
97.
Zurück zum Zitat Allegra A, Pioggia G, Tonacci A, Casciaro M, Musolino C, Gangemi S. Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR–ABL-Negative Myeloproliferative Neoplasm. Antioxidants. 2020;9:1037.PubMedPubMedCentralCrossRef Allegra A, Pioggia G, Tonacci A, Casciaro M, Musolino C, Gangemi S. Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR–ABL-Negative Myeloproliferative Neoplasm. Antioxidants. 2020;9:1037.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Gleitz HFE, Benabid A, Schneider RK. Still a burning question: the interplay between inflammation and fibrosis in myeloproliferative neoplasms. Curr Opin Hematol. 2021;28:364–71.PubMedPubMedCentralCrossRef Gleitz HFE, Benabid A, Schneider RK. Still a burning question: the interplay between inflammation and fibrosis in myeloproliferative neoplasms. Curr Opin Hematol. 2021;28:364–71.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Koren-Michowitz M, Landman J, Cohen Y, Rahimi-Levene N, Salomon O, Michael M, et al. JAK2V617F allele burden is associated with transformation to myelofibrosis. Leuk Lymphoma. 2012;53:2210–3.PubMedCrossRef Koren-Michowitz M, Landman J, Cohen Y, Rahimi-Levene N, Salomon O, Michael M, et al. JAK2V617F allele burden is associated with transformation to myelofibrosis. Leuk Lymphoma. 2012;53:2210–3.PubMedCrossRef
100.
Zurück zum Zitat Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35.PubMedCrossRef Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35.PubMedCrossRef
101.
Zurück zum Zitat Farnoud N, Famulare C, Papaemmanuil E, McGovern E, Medina J, Arango Ossa JE, et al. Landscape of TP53 Mutations in MPN. Blood. 2019;134:1681–1681.CrossRef Farnoud N, Famulare C, Papaemmanuil E, McGovern E, Medina J, Arango Ossa JE, et al. Landscape of TP53 Mutations in MPN. Blood. 2019;134:1681–1681.CrossRef
102.
Zurück zum Zitat Kubesova B, Pavlova S, Malcikova J, Kabathova J, Radova L, Tom N, et al. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK 2 mutational status. Leukemia. 2018;32:450–61.PubMedCrossRef Kubesova B, Pavlova S, Malcikova J, Kabathova J, Radova L, Tom N, et al. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK 2 mutational status. Leukemia. 2018;32:450–61.PubMedCrossRef
103.
Zurück zum Zitat Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto J‑C, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97.PubMedPubMedCentralCrossRef Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto J‑C, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Spivak JL. Advances in polycythemia vera and lessons for acute leukemia. Best Pract Res Clin Haematol. 2021;34:101330.PubMedCrossRef Spivak JL. Advances in polycythemia vera and lessons for acute leukemia. Best Pract Res Clin Haematol. 2021;34:101330.PubMedCrossRef
105.
Zurück zum Zitat Grunwald MR, Zwicker JI, Gerds AT, Burke JM, Xue Z, Crowgey EL, et al. A Real-World Evaluation of Risk Factors for Disease Progression in Patients with Polycythemia Vera (PV) Enrolled in REVEAL. Blood. 2023;142:385–385.CrossRef Grunwald MR, Zwicker JI, Gerds AT, Burke JM, Xue Z, Crowgey EL, et al. A Real-World Evaluation of Risk Factors for Disease Progression in Patients with Polycythemia Vera (PV) Enrolled in REVEAL. Blood. 2023;142:385–385.CrossRef
106.
Zurück zum Zitat Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:477–82.PubMedPubMedCentralCrossRef Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:477–82.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137:2152–60.PubMedCrossRef Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137:2152–60.PubMedCrossRef
108.
Zurück zum Zitat Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.PubMedCrossRef Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.PubMedCrossRef
109.
Zurück zum Zitat Barbui T, Vannucchi AM, Carobbio A, Rumi E, Finazzi G, Gisslinger H, et al. The effect of arterial hypertension on thrombosis in low-risk polycythemia vera. Am J Hematol. 2017;92. Barbui T, Vannucchi AM, Carobbio A, Rumi E, Finazzi G, Gisslinger H, et al. The effect of arterial hypertension on thrombosis in low-risk polycythemia vera. Am J Hematol. 2017;92.
110.
Zurück zum Zitat Horvat I, Boban A, Zadro R, Antolic MR, Serventi-Seiwerth R, Roncevic P, et al. Influence of Blood Count, Cardiovascular Risks, Inherited Thrombophilia, and JAK 2 V617F Burden Allele on Type of Thrombosis in Patients With Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Clin Lymphoma Myeloma Leuk. 2019;19:53–63.PubMedCrossRef Horvat I, Boban A, Zadro R, Antolic MR, Serventi-Seiwerth R, Roncevic P, et al. Influence of Blood Count, Cardiovascular Risks, Inherited Thrombophilia, and JAK 2 V617F Burden Allele on Type of Thrombosis in Patients With Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Clin Lymphoma Myeloma Leuk. 2019;19:53–63.PubMedCrossRef
111.
Zurück zum Zitat Mancuso S, Santoro M, Accurso V, Agliastro G, Raso S, Di Piazza F, et al. Cardiovascular Risk in Polycythemia Vera: Thrombotic Risk and Survival: Can Cytoreductive Therapy Be Useful in Patients with Low-Risk Polycythemia Vera with Cardiovascular Risk Factors? Oncol Res Treat. 2020;43:526–30.PubMedCrossRef Mancuso S, Santoro M, Accurso V, Agliastro G, Raso S, Di Piazza F, et al. Cardiovascular Risk in Polycythemia Vera: Thrombotic Risk and Survival: Can Cytoreductive Therapy Be Useful in Patients with Low-Risk Polycythemia Vera with Cardiovascular Risk Factors? Oncol Res Treat. 2020;43:526–30.PubMedCrossRef
112.
113.
Zurück zum Zitat Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.PubMedCrossRef Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.PubMedCrossRef
114.
Zurück zum Zitat Cordua S, Kjaer L, Skov V, Pallisgaard N, Hasselbalch HC, Ellervik C. Prevalence and phenotypes of JAK 2 V617F and calreticulin mutations in a Danish general population. Blood. 2019;134:469–79.PubMedCrossRef Cordua S, Kjaer L, Skov V, Pallisgaard N, Hasselbalch HC, Ellervik C. Prevalence and phenotypes of JAK 2 V617F and calreticulin mutations in a Danish general population. Blood. 2019;134:469–79.PubMedCrossRef
115.
Zurück zum Zitat Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10.
116.
Zurück zum Zitat Kristiansen MH, Kjær L, Skov V, Larsen MK, Ellervik C, Hasselbalch HC, et al. JAK2V617F mutation is highly prevalent in patients with ischemic stroke: a case-control study. Blood Adv. 2023;7:5825–34.PubMedPubMedCentralCrossRef Kristiansen MH, Kjær L, Skov V, Larsen MK, Ellervik C, Hasselbalch HC, et al. JAK2V617F mutation is highly prevalent in patients with ischemic stroke: a case-control study. Blood Adv. 2023;7:5825–34.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Egyed M, Kajtar B, Foldesi C, Skov V, Kjær L, Hasselbalch HC. Ropeginterferon-alfa2b resolves angina pectoris and reduces JAK2V617F in a patient with clonal hematopoiesis of indeterminate potential: A case report. Front Hematol. 2022;1. Egyed M, Kajtar B, Foldesi C, Skov V, Kjær L, Hasselbalch HC. Ropeginterferon-alfa2b resolves angina pectoris and reduces JAK2V617F in a patient with clonal hematopoiesis of indeterminate potential: A case report. Front Hematol. 2022;1.
118.
Zurück zum Zitat Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N Engl J Med. 2014;371:2488–98.PubMedPubMedCentralCrossRef Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N Engl J Med. 2014;371:2488–98.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Benevolo G, Marchetti M, Melchio R, Beggiato E, Sartori C, Biolé CA, et al. Diagnosis and Management of Cardiovascular Risk in Patients with Polycythemia Vera. Vasc Health Risk Manag. 2023;19:765–78.PubMedPubMedCentralCrossRef Benevolo G, Marchetti M, Melchio R, Beggiato E, Sartori C, Biolé CA, et al. Diagnosis and Management of Cardiovascular Risk in Patients with Polycythemia Vera. Vasc Health Risk Manag. 2023;19:765–78.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Egyed M, Kovacs E, Karadi E, Herczeg J, Kajtár B, Kjaer L, et al. Resolution of Angina Pectoris in Five Patients with Myeloproliferative Neoplasms Treated with Pegylated Interferon Resistant Anginal: MPN Patient Treated with PEG-IFN. J Leuk. 2023;11. Egyed M, Kovacs E, Karadi E, Herczeg J, Kajtár B, Kjaer L, et al. Resolution of Angina Pectoris in Five Patients with Myeloproliferative Neoplasms Treated with Pegylated Interferon Resistant Anginal: MPN Patient Treated with PEG-IFN. J Leuk. 2023;11.
121.
Zurück zum Zitat Alvarez-Larrán A, Pereira A, Cervantes F, Arellano-Rodrigo E, Hernández-Boluda J‑C, Ferrer-Marín F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood. 2012;119:1363–9.PubMedCrossRef Alvarez-Larrán A, Pereira A, Cervantes F, Arellano-Rodrigo E, Hernández-Boluda J‑C, Ferrer-Marín F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood. 2012;119:1363–9.PubMedCrossRef
122.
Zurück zum Zitat Baigent C. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60.PubMedCrossRef Baigent C. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60.PubMedCrossRef
123.
Zurück zum Zitat Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, et al. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med. 2016;374:2021–31.PubMedCrossRef Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, et al. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med. 2016;374:2021–31.PubMedCrossRef
124.
Zurück zum Zitat The Risk and Prevention Study Collaborative Group. n–3 Fatty Acids in Patients with Multiple Cardiovascular Risk Factors. N Engl J Med. 2013;368:1800–8.CrossRef The Risk and Prevention Study Collaborative Group. n–3 Fatty Acids in Patients with Multiple Cardiovascular Risk Factors. N Engl J Med. 2013;368:1800–8.CrossRef
125.
Zurück zum Zitat Barbui T, Carobbio A, Rumi E, Finazzi G, Gisslinger H, Rodeghiero F, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014;124:3021–3.PubMedCrossRef Barbui T, Carobbio A, Rumi E, Finazzi G, Gisslinger H, Rodeghiero F, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014;124:3021–3.PubMedCrossRef
126.
Zurück zum Zitat Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia. 2023;37:2129–32.PubMedPubMedCentralCrossRef Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia. 2023;37:2129–32.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762–9.PubMedPubMedCentralCrossRef Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762–9.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Gisslinger H, Ludwig H, Linkesch W, Chott A, Fritz E, Radaszkiewicz T. Long-term interferon therapy for thrombocytosis in myeloproliferative diseases. Lancet. 1989;1:634–7.PubMedCrossRef Gisslinger H, Ludwig H, Linkesch W, Chott A, Fritz E, Radaszkiewicz T. Long-term interferon therapy for thrombocytosis in myeloproliferative diseases. Lancet. 1989;1:634–7.PubMedCrossRef
129.
Zurück zum Zitat Linkesch W, Gisslinger H, Ludwig H, Flener R, Sinzinger H. Therapy with interferon (recombinant IFN-alpha-2C) in myeloproliferative diseases with severe thrombocytoses. Acta Med Austriaca. 1985;12:123–7.PubMed Linkesch W, Gisslinger H, Ludwig H, Flener R, Sinzinger H. Therapy with interferon (recombinant IFN-alpha-2C) in myeloproliferative diseases with severe thrombocytoses. Acta Med Austriaca. 1985;12:123–7.PubMed
130.
Zurück zum Zitat Mazza GL, Mead-Harvey C, Mascarenhas J, Yacoub A, Kosiorek HE, Hoffman R, et al. Symptom burden and quality of life in patients with high-risk essential thrombocythaemia and polycythaemia vera receiving hydroxyurea or pegylated interferon alfa-2a: a post-hoc analysis of the MPN-RC 111 and 112 trials. Lancet Haematol. 2022;9:e38–48.PubMedPubMedCentralCrossRef Mazza GL, Mead-Harvey C, Mascarenhas J, Yacoub A, Kosiorek HE, Hoffman R, et al. Symptom burden and quality of life in patients with high-risk essential thrombocythaemia and polycythaemia vera receiving hydroxyurea or pegylated interferon alfa-2a: a post-hoc analysis of the MPN-RC 111 and 112 trials. Lancet Haematol. 2022;9:e38–48.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Marchetti M, Vannucchi AM, Griesshammer M, Harrison C, Koschmieder S, Gisslinger H, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022;9:e301–11.PubMedCrossRef Marchetti M, Vannucchi AM, Griesshammer M, Harrison C, Koschmieder S, Gisslinger H, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022;9:e301–11.PubMedCrossRef
132.
Zurück zum Zitat Gerds AT, Mesa RA, Burke JM, Grunwald MR, Stein BL, Squier P, et al. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: Analysis from REVEAL. Blood Journal. 2023;. Gerds AT, Mesa RA, Burke JM, Grunwald MR, Stein BL, Squier P, et al. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: Analysis from REVEAL. Blood Journal. 2023;.
133.
Zurück zum Zitat Palandri F, Benevolo G, Elli EM, Latagliata R, Auteri G, Branzanti F, et al. ELN Criteria for Cytoreduction Start Identify Patients with Polycythemia Vera at Higher Thrombotic Risk. Blood. 2023;142:4527–4527.CrossRef Palandri F, Benevolo G, Elli EM, Latagliata R, Auteri G, Branzanti F, et al. ELN Criteria for Cytoreduction Start Identify Patients with Polycythemia Vera at Higher Thrombotic Risk. Blood. 2023;142:4527–4527.CrossRef
134.
Zurück zum Zitat Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. N Engl J Med. 2013;368:22–33.PubMedCrossRef Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. N Engl J Med. 2013;368:22–33.PubMedCrossRef
135.
Zurück zum Zitat Passamonti F, Palandri F, Saydam G, Callum J, Devos T, Guglielmelli P, et al. Ruxolitinib versus best available therapy in inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): 5‑year follow up of a randomised, phase 3b study. Lancet Haematol. 2022;9:e480–92.PubMedCrossRef Passamonti F, Palandri F, Saydam G, Callum J, Devos T, Guglielmelli P, et al. Ruxolitinib versus best available therapy in inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): 5‑year follow up of a randomised, phase 3b study. Lancet Haematol. 2022;9:e480–92.PubMedCrossRef
136.
Zurück zum Zitat Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18:88–99.PubMedCrossRef Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18:88–99.PubMedCrossRef
137.
Zurück zum Zitat Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med. 2015;372:426–35.PubMedPubMedCentralCrossRef Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med. 2015;372:426–35.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Knudsen TA, Hansen DL, Ocias LF, Bjerrum O, Brabrand M, Christensen SF, et al. Final Analysis of the Daliah Trial. A Randomized Phase III Trial of Interferon‑α Versus Hydroxyurea in Patients with MPN. Blood. 2023;142:746–746.CrossRef Knudsen TA, Hansen DL, Ocias LF, Bjerrum O, Brabrand M, Christensen SF, et al. Final Analysis of the Daliah Trial. A Randomized Phase III Trial of Interferon‑α Versus Hydroxyurea in Patients with MPN. Blood. 2023;142:746–746.CrossRef
139.
Zurück zum Zitat Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. A randomized phase 3 trial of interferon‑α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139:2931–41.PubMedPubMedCentralCrossRef Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. A randomized phase 3 trial of interferon‑α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139:2931–41.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Beauverd Y, Ianotto J‑C, Thaw KH, Sobas M, Sadjadian P, Curto-Garcia N, et al. Impact of Cytoreductive Drugs upon Outcomes in a Contemporary Cohort of Adolescent and Young Adults with Essential Thrombocythemia and Polycythemia Vera. Blood. 2023;142:748–748.CrossRef Beauverd Y, Ianotto J‑C, Thaw KH, Sobas M, Sadjadian P, Curto-Garcia N, et al. Impact of Cytoreductive Drugs upon Outcomes in a Contemporary Cohort of Adolescent and Young Adults with Essential Thrombocythemia and Polycythemia Vera. Blood. 2023;142:748–748.CrossRef
143.
Zurück zum Zitat Ginzburg Y, Kirubamoorthy K, Salleh S, Lee S‑E, Lee JH, Selvaratnam V, et al. Rusfertide (PTG-300) Induction Therapy Rapidly Achieves Hematocrit Control in Polycythemia Vera Patients without the Need for Therapeutic Phlebotomy. Blood. 2021;138:390–390.CrossRef Ginzburg Y, Kirubamoorthy K, Salleh S, Lee S‑E, Lee JH, Selvaratnam V, et al. Rusfertide (PTG-300) Induction Therapy Rapidly Achieves Hematocrit Control in Polycythemia Vera Patients without the Need for Therapeutic Phlebotomy. Blood. 2021;138:390–390.CrossRef
144.
Zurück zum Zitat Hoffman R, Ginzburg Y, Kremyanskaya M, Khanna S, Modi N, Valone FH, et al. Rusfertide (PTG-300) treatment in phlebotomy-dependent polycythemia vera patients. J Clin Oncol. 2022;40:7003–7003.CrossRef Hoffman R, Ginzburg Y, Kremyanskaya M, Khanna S, Modi N, Valone FH, et al. Rusfertide (PTG-300) treatment in phlebotomy-dependent polycythemia vera patients. J Clin Oncol. 2022;40:7003–7003.CrossRef
145.
Zurück zum Zitat Gotlib J, Gabrail N, O’Connell CL, Garcia-Delgado R, Sbardellati T, Rothbaum WM, et al. A Randomized, Open-Label, Multicenter, Phase 2 Study to Evaluate the Efficacy, Safety, and Pharmacokinetics of KRT-232 Compared with Ruxolitinib in Patients with Phlebotomy-Dependent Polycythemia Vera. Blood. 2019;134:4168–4168.CrossRef Gotlib J, Gabrail N, O’Connell CL, Garcia-Delgado R, Sbardellati T, Rothbaum WM, et al. A Randomized, Open-Label, Multicenter, Phase 2 Study to Evaluate the Efficacy, Safety, and Pharmacokinetics of KRT-232 Compared with Ruxolitinib in Patients with Phlebotomy-Dependent Polycythemia Vera. Blood. 2019;134:4168–4168.CrossRef
146.
Zurück zum Zitat Rai S, Grockowiak E, Hansen N, Luque PD, Stoll CB, Hao-Shen H, et al. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK 2-V617F driven myeloproliferative neoplasm. Nat Commun. 2022;13:5346.PubMedPubMedCentralCrossRef Rai S, Grockowiak E, Hansen N, Luque PD, Stoll CB, Hao-Shen H, et al. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK 2-V617F driven myeloproliferative neoplasm. Nat Commun. 2022;13:5346.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Rahman MF‑U, Yang Y, Le BT, Dutta A, Posyniak J, Faughnan P, et al. Interleukin‑1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun. 2022;13:5347.PubMedPubMedCentralCrossRef Rahman MF‑U, Yang Y, Le BT, Dutta A, Posyniak J, Faughnan P, et al. Interleukin‑1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun. 2022;13:5347.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, et al. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med. 2021;218. Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, et al. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med. 2021;218.
Metadaten
Titel
JAK2 mutations in polycythemia vera: from molecular origins to inflammatory pathways and clinical implications
verfasst von
Beatriz Bellosillo
Michael Doubek
Ciprian Tomuleasa
Martin Griesshammer
Monia Marchetti
Tomasz Sacha
Heinz Gisslinger
Publikationsdatum
10.12.2024
Verlag
Springer Vienna
Erschienen in
memo - Magazine of European Medical Oncology / Ausgabe Sonderheft 4/2025
Print ISSN: 1865-5041
Elektronische ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-024-01009-0