Skip to main content

18.12.2023 | review

Osmolarity spatial variations on the ocular surface

verfasst von: Hugo Pena-Verdeal, MSc, PhD, Jacobo Garcia-Queiruga, MSc, PhD, Noelia Nores-Palmas, OD, MSc, Veronica Noya-Padin, OD, MSc, Maria J. Giraldez, MSc, PhD, Eva Yebra-Pimentel, OD, PhD

Erschienen in: Spektrum der Augenheilkunde

Einloggen, um Zugang zu erhalten

Summary

Maintaining a healthy balance of tear production, preservation, and elimination is crucial for proper eye function. Tear osmolarity and its variations have been suggested to be reliable indicators for diagnosing high-prevalence pathologies such as dry eye disease (DED). It is important to note that in most methods used to estimate tear osmolarity, the fluid sample is collected from the inferior tear meniscus. However, tear film is distributed in different compartments across the ocular surface with distinctive characteristics. Clinicians should be aware that tear osmolarity sampled from that area can help estimate the value in other compartments and serve as an indicator in diagnosing DED, but it may not reflect the exact osmolarity due to different effects or forces. The present review aims to summarize the current experimental clinical knowledge regarding tear osmolarity variation and its significance in diagnosing tear film problems using mathematical models for assessing tear dynamics.
Literatur
1.
Zurück zum Zitat Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510.PubMedCrossRef Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510.PubMedCrossRef
2.
Zurück zum Zitat Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II Diagnostic Methodology report. Ocul Surf. 2017;15:539–74.PubMedCrossRef Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II Diagnostic Methodology report. Ocul Surf. 2017;15:539–74.PubMedCrossRef
3.
Zurück zum Zitat Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017;15:276–83.PubMedCrossRef Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017;15:276–83.PubMedCrossRef
4.
Zurück zum Zitat Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom. 2012;95:3–11.PubMedCrossRef Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom. 2012;95:3–11.PubMedCrossRef
5.
Zurück zum Zitat Sullivan BD, Crews LA, Messmer EM, et al. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: clinical implications. Acta Ophthalmol. 2014;92:161–6.PubMedCrossRef Sullivan BD, Crews LA, Messmer EM, et al. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: clinical implications. Acta Ophthalmol. 2014;92:161–6.PubMedCrossRef
6.
Zurück zum Zitat van Setten GB. Osmokinetics: Defining the Characteristics of Osmotic Challenge to the Ocular Surface. Klin Monbl Augenheilkd. 2020;237:644–8.PubMedCrossRef van Setten GB. Osmokinetics: Defining the Characteristics of Osmotic Challenge to the Ocular Surface. Klin Monbl Augenheilkd. 2020;237:644–8.PubMedCrossRef
7.
Zurück zum Zitat van Setten GB. Osmokinetics: A new dynamic concept in dry eye disease. J Fr Ophtalmol. 2019;42:221–5.PubMedCrossRef van Setten GB. Osmokinetics: A new dynamic concept in dry eye disease. J Fr Ophtalmol. 2019;42:221–5.PubMedCrossRef
8.
Zurück zum Zitat Pena-Verdeal H, Garcia-Resua C, Garcia-Queiruga J, Sabucedo-Villamarin B, Yebra-Pimentel E, Giraldez MJ. Diurnal variations of tear film osmolarity on the ocular surface. Clin Exp Optom. 2023;106:351–61.PubMedCrossRef Pena-Verdeal H, Garcia-Resua C, Garcia-Queiruga J, Sabucedo-Villamarin B, Yebra-Pimentel E, Giraldez MJ. Diurnal variations of tear film osmolarity on the ocular surface. Clin Exp Optom. 2023;106:351–61.PubMedCrossRef
9.
Zurück zum Zitat Erstad BL. Osmolality and osmolarity: narrowing the terminology gap. Pharmacotherapy. 2003;23:1085–6.PubMedCrossRef Erstad BL. Osmolality and osmolarity: narrowing the terminology gap. Pharmacotherapy. 2003;23:1085–6.PubMedCrossRef
10.
Zurück zum Zitat Pena-Verdeal H, Garcia-Resua C, Vazquez-Sanchez C, Garcia-Queiruga J, Yebra-Pimentel E, Giraldez MJ. Reproducibility in measuring tear samples using a freezing point depression osmometer. Clin Exp Optom. 2019;102:571–5.PubMedCrossRef Pena-Verdeal H, Garcia-Resua C, Vazquez-Sanchez C, Garcia-Queiruga J, Yebra-Pimentel E, Giraldez MJ. Reproducibility in measuring tear samples using a freezing point depression osmometer. Clin Exp Optom. 2019;102:571–5.PubMedCrossRef
11.
Zurück zum Zitat Nolfi J, Caffery B. Randomized comparison of in vivo performance of two point-of-care tear film osmometers. Clin Ophthalmol. 2017;11:945–50.PubMedPubMedCentralCrossRef Nolfi J, Caffery B. Randomized comparison of in vivo performance of two point-of-care tear film osmometers. Clin Ophthalmol. 2017;11:945–50.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Keech A, Senchyna M, Jones L. Impact of time between collection and collection method on human tear fluid osmolarity. Curr Eye Res. 2013;38:428–36.PubMedCrossRef Keech A, Senchyna M, Jones L. Impact of time between collection and collection method on human tear fluid osmolarity. Curr Eye Res. 2013;38:428–36.PubMedCrossRef
13.
Zurück zum Zitat Sabucedo-Villamarin B, Pena-Verdeal H, Garcia-Queiruga J, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. Categorization of the Aqueous Deficient Dry Eye by a Cut-Off Criterion of TMH Measured with. Tearscope Life (basel). 2022;12. Sabucedo-Villamarin B, Pena-Verdeal H, Garcia-Queiruga J, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. Categorization of the Aqueous Deficient Dry Eye by a Cut-Off Criterion of TMH Measured with. Tearscope Life (basel). 2022;12.
14.
Zurück zum Zitat Liu H, Begley C, Chen M, et al. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci. 2009;50:3671–9.PubMedCrossRef Liu H, Begley C, Chen M, et al. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci. 2009;50:3671–9.PubMedCrossRef
15.
Zurück zum Zitat King-Smith PE, Ramamoorthy P, Braun RJ, Nichols JJ. Tear film images and breakup analyzed using fluorescent quenching. Invest Ophthalmol Vis Sci. 2013;54:6003–11.PubMedPubMedCentralCrossRef King-Smith PE, Ramamoorthy P, Braun RJ, Nichols JJ. Tear film images and breakup analyzed using fluorescent quenching. Invest Ophthalmol Vis Sci. 2013;54:6003–11.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Peng CC, Cerretani C, Braun RJ, Radke CJ. Evaporation-driven instability of the precorneal tear film. Adv Colloid Interface Sci. 2014;206:250–64.PubMedCrossRef Peng CC, Cerretani C, Braun RJ, Radke CJ. Evaporation-driven instability of the precorneal tear film. Adv Colloid Interface Sci. 2014;206:250–64.PubMedCrossRef
17.
Zurück zum Zitat Braun RJ, King-Smith PE, Begley CG, Li L, Gewecke NR. Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res. 2015;45:132–64.PubMedCrossRef Braun RJ, King-Smith PE, Begley CG, Li L, Gewecke NR. Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res. 2015;45:132–64.PubMedCrossRef
18.
Zurück zum Zitat King-Smith PE, Nichols JJ, Nichols KK, Fink BA, Braun RJ. Contributions of evaporation and other mechanisms to tear film thinning and break-up. Optom Vis Sci. 2008;85:623–30.PubMedCrossRef King-Smith PE, Nichols JJ, Nichols KK, Fink BA, Braun RJ. Contributions of evaporation and other mechanisms to tear film thinning and break-up. Optom Vis Sci. 2008;85:623–30.PubMedCrossRef
19.
Zurück zum Zitat Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea. 2007;26:452–60.PubMedCrossRef Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea. 2007;26:452–60.PubMedCrossRef
20.
Zurück zum Zitat Tomlinson A, McCann LC, Pearce EI. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques. Cornea. 2010;29:1036–41.PubMedCrossRef Tomlinson A, McCann LC, Pearce EI. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques. Cornea. 2010;29:1036–41.PubMedCrossRef
21.
Zurück zum Zitat Masmali A, Alrabiah S, Alharbi A, El-Hiti GA, Almubrad T. Investigation of tear osmolarity using the TearLab Osmolarity System in normal adults in Saudi Arabia. Eye Contact Lens. 2014;40:74–8.PubMedCrossRef Masmali A, Alrabiah S, Alharbi A, El-Hiti GA, Almubrad T. Investigation of tear osmolarity using the TearLab Osmolarity System in normal adults in Saudi Arabia. Eye Contact Lens. 2014;40:74–8.PubMedCrossRef
22.
Zurück zum Zitat Wolffsohn JS, Wang MTM, Vidal-Rohr M, et al. Demographic and lifestyle risk factors of dry eye disease subtypes: A cross-sectional study. Ocul Surf. 2021;21:58–63.PubMedCrossRef Wolffsohn JS, Wang MTM, Vidal-Rohr M, et al. Demographic and lifestyle risk factors of dry eye disease subtypes: A cross-sectional study. Ocul Surf. 2021;21:58–63.PubMedCrossRef
23.
Zurück zum Zitat Garcia-Queiruga J, Pena-Verdeal H, Sabucedo-Villamarin B, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. A cross-sectional study of non-modifiable and modifiable risk factors of dry eye disease states. Cont Lens Anterior Eye. 2023;46:101800.PubMedCrossRef Garcia-Queiruga J, Pena-Verdeal H, Sabucedo-Villamarin B, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. A cross-sectional study of non-modifiable and modifiable risk factors of dry eye disease states. Cont Lens Anterior Eye. 2023;46:101800.PubMedCrossRef
24.
Zurück zum Zitat Tavakoli A, Markoulli M, Flanagan J, Papas E. The validity of point of care tear film osmometers in the diagnosis of dry eye. Ophthalmic Physiol Opt. 2022;42:140–8.PubMedCrossRef Tavakoli A, Markoulli M, Flanagan J, Papas E. The validity of point of care tear film osmometers in the diagnosis of dry eye. Ophthalmic Physiol Opt. 2022;42:140–8.PubMedCrossRef
25.
Zurück zum Zitat Park J, Choi Y, Han G, et al. Evaluation of tear osmolarity measured by I‑Pen osmolarity system in patients with dry eye. Sci Rep. 2021;11:7726.PubMedPubMedCentralCrossRef Park J, Choi Y, Han G, et al. Evaluation of tear osmolarity measured by I‑Pen osmolarity system in patients with dry eye. Sci Rep. 2021;11:7726.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Sergio P, Giancarlo I, Matteo F, et al. Analysis of tear film in cystinosis patients treated with topical viscous cysteamine hydrochloride (Cystadrops((R))). Eur J Ophthalmol. 2022;11206721221078649. Sergio P, Giancarlo I, Matteo F, et al. Analysis of tear film in cystinosis patients treated with topical viscous cysteamine hydrochloride (Cystadrops((R))). Eur J Ophthalmol. 2022;11206721221078649.
27.
Zurück zum Zitat Pena-Verdeal H, Garcia-Resua C, Vazquez-Sanchez C, Garcia-Queiruga J, Giraldez MJ, Yebra-Pimentel E. Inter-eye osmolarity differences in patients with symptomatic and non-symptomatic dry eyes. Arq Bras Oftalmol. 2020;83:103–8.PubMedCrossRef Pena-Verdeal H, Garcia-Resua C, Vazquez-Sanchez C, Garcia-Queiruga J, Giraldez MJ, Yebra-Pimentel E. Inter-eye osmolarity differences in patients with symptomatic and non-symptomatic dry eyes. Arq Bras Oftalmol. 2020;83:103–8.PubMedCrossRef
28.
Zurück zum Zitat King-Smith PE, Fink BA, Nichols JJ, Nichols KK, Braun RJ, McFadden GB. The contribution of lipid layer movement to tear film thinning and breakup. Invest Ophthalmol Vis Sci. 2009;50:2747–56.PubMedCrossRef King-Smith PE, Fink BA, Nichols JJ, Nichols KK, Braun RJ, McFadden GB. The contribution of lipid layer movement to tear film thinning and breakup. Invest Ophthalmol Vis Sci. 2009;50:2747–56.PubMedCrossRef
29.
Zurück zum Zitat Nichols JJ, Mitchell GL, King-Smith PE. Thinning rate of the precorneal and prelens tear films. Invest Ophthalmol Vis Sci. 2005;46:2353–61.PubMedCrossRef Nichols JJ, Mitchell GL, King-Smith PE. Thinning rate of the precorneal and prelens tear films. Invest Ophthalmol Vis Sci. 2005;46:2353–61.PubMedCrossRef
30.
Zurück zum Zitat Garcia-Queiruga J, Pena-Verdeal H, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. Inter-week variation of meibometry and tear break-up time in healthy subjects. Clin Exp Optom. 2021;104:691–7.PubMedCrossRef Garcia-Queiruga J, Pena-Verdeal H, Giraldez MJ, Garcia-Resua C, Yebra-Pimentel E. Inter-week variation of meibometry and tear break-up time in healthy subjects. Clin Exp Optom. 2021;104:691–7.PubMedCrossRef
31.
Zurück zum Zitat Bron AJ, Tiffany JM, Yokoi N, Gouveia SM. Using osmolarity to diagnose dry eye: a compartmental hypothesis and review of our assumptions. Adv Exp Med Biol. 2002;506:1087–95.PubMedCrossRef Bron AJ, Tiffany JM, Yokoi N, Gouveia SM. Using osmolarity to diagnose dry eye: a compartmental hypothesis and review of our assumptions. Adv Exp Med Biol. 2002;506:1087–95.PubMedCrossRef
32.
Zurück zum Zitat Gaffney EA, Tiffany JM, Yokoi N, Bron AJ. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog Retin Eye Res. 2010;29:59–78.PubMedCrossRef Gaffney EA, Tiffany JM, Yokoi N, Bron AJ. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog Retin Eye Res. 2010;29:59–78.PubMedCrossRef
34.
Zurück zum Zitat McMonnies CW. An examination of the relationship between ocular surface tear osmolarity compartments and epitheliopathy. Ocul Surf. 2015;13:110–7.PubMedCrossRef McMonnies CW. An examination of the relationship between ocular surface tear osmolarity compartments and epitheliopathy. Ocul Surf. 2015;13:110–7.PubMedCrossRef
35.
Zurück zum Zitat Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem. 2002;277:19139–44.PubMedCrossRef Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem. 2002;277:19139–44.PubMedCrossRef
36.
Zurück zum Zitat Levin MH, Verkman AS. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva. Invest Ophthalmol Vis Sci. 2004;45:4423–32.PubMedCrossRef Levin MH, Verkman AS. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva. Invest Ophthalmol Vis Sci. 2004;45:4423–32.PubMedCrossRef
37.
Zurück zum Zitat Levin MH, Verkman AS. Aquaporins and CFTR in ocular epithelial fluid transport. J Membr Biol. 2006;210:105–15.PubMedCrossRef Levin MH, Verkman AS. Aquaporins and CFTR in ocular epithelial fluid transport. J Membr Biol. 2006;210:105–15.PubMedCrossRef
38.
Zurück zum Zitat Alishahi M, Kamali R. Forced diffusion of water molecules through aquaporin‑5 biomembrane; a molecular dynamics study. Biophys Physicobiol. 2018;15:255–62.PubMedPubMedCentralCrossRef Alishahi M, Kamali R. Forced diffusion of water molecules through aquaporin‑5 biomembrane; a molecular dynamics study. Biophys Physicobiol. 2018;15:255–62.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Luke RA, Braun RJ, Driscoll TA, Awisi-Gyau D, Begley CG. Parameter Estimation for Mixed-Mechanism Tear Film Thinning. Bull Math Biol. 2021;83:56.PubMedCrossRef Luke RA, Braun RJ, Driscoll TA, Awisi-Gyau D, Begley CG. Parameter Estimation for Mixed-Mechanism Tear Film Thinning. Bull Math Biol. 2021;83:56.PubMedCrossRef
40.
Zurück zum Zitat McDonald JE, Brubaker S. Meniscus-induced thinning of tear films. Am J Ophthalmol. 1971;72:139–46.PubMedCrossRef McDonald JE, Brubaker S. Meniscus-induced thinning of tear films. Am J Ophthalmol. 1971;72:139–46.PubMedCrossRef
41.
Zurück zum Zitat Miller KL, Polse KA, Radke CJ. Black-line formation and the “perched” human tear film. Curr Eye Res. 2002;25:155–62.PubMedCrossRef Miller KL, Polse KA, Radke CJ. Black-line formation and the “perched” human tear film. Curr Eye Res. 2002;25:155–62.PubMedCrossRef
42.
Zurück zum Zitat Owens H, Phillips JR. Tear spreading rates: post-blink. Adv Exp Med Biol. 2002;506:1201–4.PubMedCrossRef Owens H, Phillips JR. Tear spreading rates: post-blink. Adv Exp Med Biol. 2002;506:1201–4.PubMedCrossRef
43.
Zurück zum Zitat King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci. 2010;51:2418–23.PubMedPubMedCentralCrossRef King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci. 2010;51:2418–23.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kimball SH, King-Smith PE, Nichols JJ. Evidence for the major contribution of evaporation to tear film thinning between blinks. Invest Ophthalmol Vis Sci. 2010;51:6294–7.PubMedPubMedCentralCrossRef Kimball SH, King-Smith PE, Nichols JJ. Evidence for the major contribution of evaporation to tear film thinning between blinks. Invest Ophthalmol Vis Sci. 2010;51:6294–7.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Braun RJ, Fitt AD. Modelling drainage of the precorneal tear film after a blink. Math Med Biol. 2003;20:1–28.PubMedCrossRef Braun RJ, Fitt AD. Modelling drainage of the precorneal tear film after a blink. Math Med Biol. 2003;20:1–28.PubMedCrossRef
46.
Zurück zum Zitat Maissa C, Guillon M. Tear film dynamics and lipid layer characteristics—effect of age and gender. Cont Lens Anterior Eye. 2010;33:176–82.PubMedCrossRef Maissa C, Guillon M. Tear film dynamics and lipid layer characteristics—effect of age and gender. Cont Lens Anterior Eye. 2010;33:176–82.PubMedCrossRef
47.
Zurück zum Zitat Blanco-Campoy DG, Graue-Hernandez EO, Quiroz-Casian N, Velez-Cordero JR, Yanez-Soto B. In-vitro evaluation of the evaporation retardation by Meibomian lipids in homogeneous and non-homogeneous evaporation. J Colloid Interface Sci. 2022;625:210–9.PubMedCrossRef Blanco-Campoy DG, Graue-Hernandez EO, Quiroz-Casian N, Velez-Cordero JR, Yanez-Soto B. In-vitro evaluation of the evaporation retardation by Meibomian lipids in homogeneous and non-homogeneous evaporation. J Colloid Interface Sci. 2022;625:210–9.PubMedCrossRef
49.
Zurück zum Zitat Benjamin WJ, Hill RM. Tear osmotic differences across the ocular surface. Graefes Arch Clin Exp Ophthalmol. 1986;224:583–6.PubMedCrossRef Benjamin WJ, Hill RM. Tear osmotic differences across the ocular surface. Graefes Arch Clin Exp Ophthalmol. 1986;224:583–6.PubMedCrossRef
50.
Zurück zum Zitat Pena-Verdeal H, Noya-Padin V, Losada-Oubina M, Saborido-Rey M, Vilas-Alonso M, Giraldez MJ. Changes of symptomatology, tear film and ocular surface integrity one week during Somofilcon‑A and Omafilcon‑A lens wear. Eur J Ophthalmol. 2022;11206721221131131. Pena-Verdeal H, Noya-Padin V, Losada-Oubina M, Saborido-Rey M, Vilas-Alonso M, Giraldez MJ. Changes of symptomatology, tear film and ocular surface integrity one week during Somofilcon‑A and Omafilcon‑A lens wear. Eur J Ophthalmol. 2022;11206721221131131.
51.
Zurück zum Zitat Zubkov VS, Breward CJ, Gaffney EA. Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity. Bull Math Biol. 2012;74:2062–93.PubMedCrossRef Zubkov VS, Breward CJ, Gaffney EA. Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity. Bull Math Biol. 2012;74:2062–93.PubMedCrossRef
52.
Zurück zum Zitat Li L, Braun RJ, Driscoll TA, Henshaw WD, Banks JW, King-Smith PE. Computed tear film and osmolarity dynamics on an eye-shaped domain. Math Med Biol. 2016;33:123–57.PubMedCrossRef Li L, Braun RJ, Driscoll TA, Henshaw WD, Banks JW, King-Smith PE. Computed tear film and osmolarity dynamics on an eye-shaped domain. Math Med Biol. 2016;33:123–57.PubMedCrossRef
53.
Zurück zum Zitat Braun RJ, Gewecke NR, Begley CG, King-Smith PE, Siddique JI. A model for tear film thinning with osmolarity and fluorescein. Invest Ophthalmol Vis Sci. 2014;55:1133–42.PubMedPubMedCentralCrossRef Braun RJ, Gewecke NR, Begley CG, King-Smith PE, Siddique JI. A model for tear film thinning with osmolarity and fluorescein. Invest Ophthalmol Vis Sci. 2014;55:1133–42.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Aydemir E, Breward CJ, Witelski TP. The effect of polar lipids on tear film dynamics. Bull Math Biol. 2011;73:1171–201.PubMedCrossRef Aydemir E, Breward CJ, Witelski TP. The effect of polar lipids on tear film dynamics. Bull Math Biol. 2011;73:1171–201.PubMedCrossRef
55.
Zurück zum Zitat Zhu H, Chauhan A. A mathematical model for ocular tear and solute balance. Curr Eye Res. 2005;30:841–54.PubMedCrossRef Zhu H, Chauhan A. A mathematical model for ocular tear and solute balance. Curr Eye Res. 2005;30:841–54.PubMedCrossRef
56.
Zurück zum Zitat Siddiquea J, Braun R. Tear film dynamics with evaporation, osmolarity and surfactant transport. Appl Math Model. 2015;39. Siddiquea J, Braun R. Tear film dynamics with evaporation, osmolarity and surfactant transport. Appl Math Model. 2015;39.
57.
Zurück zum Zitat Braun R. Dynamics of the Tear Film. Annu Rev Fluid Mech. 2012;44. Braun R. Dynamics of the Tear Film. Annu Rev Fluid Mech. 2012;44.
58.
Zurück zum Zitat Abelson MB, Ousler GW 3rd, Nally LA, Welch D, Krenzer K. Alternative reference values for tear film break up time in normal and dry eye populations. Adv Exp Med Biol. 2002;506:1121–5.PubMedCrossRef Abelson MB, Ousler GW 3rd, Nally LA, Welch D, Krenzer K. Alternative reference values for tear film break up time in normal and dry eye populations. Adv Exp Med Biol. 2002;506:1121–5.PubMedCrossRef
59.
Zurück zum Zitat Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. Clao J. 1995;21:221–32.PubMed Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. Clao J. 1995;21:221–32.PubMed
60.
Zurück zum Zitat Johnson ME, Murphy PJ. The Effect of instilled fluorescein solution volume on the values and repeatability of TBUT measurements. Cornea. 2005;24:811–7.PubMedCrossRef Johnson ME, Murphy PJ. The Effect of instilled fluorescein solution volume on the values and repeatability of TBUT measurements. Cornea. 2005;24:811–7.PubMedCrossRef
61.
Zurück zum Zitat Pena-Verdeal H, Ramos L, Garcia-Queiruga J, Garcia-Resua C, Giraldez MJ, Yebra-Pimentel E. Validation of a New Software Application for Tear Breakup Measurement. Optom Vis Sci. 2022;99:159–66.PubMedCrossRef Pena-Verdeal H, Ramos L, Garcia-Queiruga J, Garcia-Resua C, Giraldez MJ, Yebra-Pimentel E. Validation of a New Software Application for Tear Breakup Measurement. Optom Vis Sci. 2022;99:159–66.PubMedCrossRef
62.
Zurück zum Zitat Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31:186–93.PubMedCrossRef Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31:186–93.PubMedCrossRef
63.
Zurück zum Zitat Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL‑8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82:588–96.PubMedCrossRef Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL‑8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82:588–96.PubMedCrossRef
64.
Zurück zum Zitat Li DQ, Chen Z, Song XJ, Luo L, Pflugfelder SC. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45:4302–11.PubMedCrossRef Li DQ, Chen Z, Song XJ, Luo L, Pflugfelder SC. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45:4302–11.PubMedCrossRef
65.
Zurück zum Zitat Kam W, Sullivan DA, Sullivan BD, Venkiteshwar M. Does hyperosmolarity induce an irreversible process leading to human corneal epithelial cell death? Investigative Ophthalmology & Visual. Science. 2016;57. Kam W, Sullivan DA, Sullivan BD, Venkiteshwar M. Does hyperosmolarity induce an irreversible process leading to human corneal epithelial cell death? Investigative Ophthalmology & Visual. Science. 2016;57.
66.
Zurück zum Zitat Schargus M, Ivanova S, Kakkassery V, Dick HB, Joachim S. Correlation of Tear Film Osmolarity and 2 Different MMP-9 Tests With Common Dry Eye Tests in a Cohort of Non-Dry Eye Patients. Cornea. 2015;34:739–44.PubMedCrossRef Schargus M, Ivanova S, Kakkassery V, Dick HB, Joachim S. Correlation of Tear Film Osmolarity and 2 Different MMP-9 Tests With Common Dry Eye Tests in a Cohort of Non-Dry Eye Patients. Cornea. 2015;34:739–44.PubMedCrossRef
67.
Zurück zum Zitat Varikooty J, Simpson TL. The interblink interval I: the relationship between sensation intensity and tear film disruption. Invest Ophthalmol Vis Sci. 2009;50:1087–92.PubMedCrossRef Varikooty J, Simpson TL. The interblink interval I: the relationship between sensation intensity and tear film disruption. Invest Ophthalmol Vis Sci. 2009;50:1087–92.PubMedCrossRef
68.
Zurück zum Zitat Begley C, Simpson T, Liu H, et al. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Invest Ophthalmol Vis Sci. 2013;54:2645–53.PubMedPubMedCentralCrossRef Begley C, Simpson T, Liu H, et al. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Invest Ophthalmol Vis Sci. 2013;54:2645–53.PubMedPubMedCentralCrossRef
69.
70.
Zurück zum Zitat Versura P, Profazio V, Campos EC. Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr Eye Res. 2010;35:553–64.PubMedCrossRef Versura P, Profazio V, Campos EC. Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr Eye Res. 2010;35:553–64.PubMedCrossRef
71.
Zurück zum Zitat Versura P, Profazio V, Fresina M, Campos EC. A novel scraping cytology score system (SCSS) grades inflammation in dry eye patients. Curr Eye Res. 2009;34:340–6.PubMedCrossRef Versura P, Profazio V, Fresina M, Campos EC. A novel scraping cytology score system (SCSS) grades inflammation in dry eye patients. Curr Eye Res. 2009;34:340–6.PubMedCrossRef
72.
Zurück zum Zitat Lopin E, Deveney T, Asbell PA. Impression cytology: recent advances and applications in dry eye disease. Ocul Surf. 2009;7:93–110.PubMedCrossRef Lopin E, Deveney T, Asbell PA. Impression cytology: recent advances and applications in dry eye disease. Ocul Surf. 2009;7:93–110.PubMedCrossRef
73.
Zurück zum Zitat Schmidl D, Witkowska KJ, Kaya S, et al. The association between subjective and objective parameters for the assessment of dry-eye syndrome. Invest Ophthalmol Vis Sci. 2015;56:1467–72.PubMedCrossRef Schmidl D, Witkowska KJ, Kaya S, et al. The association between subjective and objective parameters for the assessment of dry-eye syndrome. Invest Ophthalmol Vis Sci. 2015;56:1467–72.PubMedCrossRef
74.
Zurück zum Zitat Alves M, Reinach PS, Paula JS, et al. Comparison of diagnostic tests in distinct well-defined conditions related to dry eye disease. Plos One. 2014;9:e97921.PubMedPubMedCentralCrossRef Alves M, Reinach PS, Paula JS, et al. Comparison of diagnostic tests in distinct well-defined conditions related to dry eye disease. Plos One. 2014;9:e97921.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Chao C, Golebiowski B, Stapleton F. The role of corneal innervation in LASIK-induced neuropathic dry eye. Ocul Surf. 2014;12:32–45.PubMedCrossRef Chao C, Golebiowski B, Stapleton F. The role of corneal innervation in LASIK-induced neuropathic dry eye. Ocul Surf. 2014;12:32–45.PubMedCrossRef
76.
Zurück zum Zitat Ambrosio R Jr., Tervo T, Wilson SE. LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg. 2008;24:396–407.PubMedCrossRef Ambrosio R Jr., Tervo T, Wilson SE. LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg. 2008;24:396–407.PubMedCrossRef
77.
Zurück zum Zitat Lee JB, Ryu CH, Kim J, Kim EK, Kim HB. Comparison of tear secretion and tear film instability after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2000;26:1326–31.PubMedCrossRef Lee JB, Ryu CH, Kim J, Kim EK, Kim HB. Comparison of tear secretion and tear film instability after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2000;26:1326–31.PubMedCrossRef
78.
Zurück zum Zitat Hassan Z, Szalai E, Berta A, Modis L Jr., Nemeth G. Assessment of tear osmolarity and other dry eye parameters in post-LASIK eyes. Cornea. 2013;32:e142–5.PubMedCrossRef Hassan Z, Szalai E, Berta A, Modis L Jr., Nemeth G. Assessment of tear osmolarity and other dry eye parameters in post-LASIK eyes. Cornea. 2013;32:e142–5.PubMedCrossRef
79.
Zurück zum Zitat Denoyer A, Landman E, Trinh L, Faure JF, Auclin F, Baudouin C. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology. 2015;122:669–76.PubMedCrossRef Denoyer A, Landman E, Trinh L, Faure JF, Auclin F, Baudouin C. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology. 2015;122:669–76.PubMedCrossRef
80.
Zurück zum Zitat Bron AJ, Yokoi N, Gaffney EA, Tiffany JM. A solute gradient in the tear meniscus. II. Implications for lid margin disease, including meibomian gland dysfunction. Ocul Surf. 2011;9:92–7.PubMedCrossRef Bron AJ, Yokoi N, Gaffney EA, Tiffany JM. A solute gradient in the tear meniscus. II. Implications for lid margin disease, including meibomian gland dysfunction. Ocul Surf. 2011;9:92–7.PubMedCrossRef
81.
Zurück zum Zitat Bron AJ, Yokoi N, Gaffney EA, Tiffany JM. A solute gradient in the tear meniscus. I. A hypothesis to explain Marx’s line. Ocul Surf. 2011;9:70–91.PubMedCrossRef Bron AJ, Yokoi N, Gaffney EA, Tiffany JM. A solute gradient in the tear meniscus. I. A hypothesis to explain Marx’s line. Ocul Surf. 2011;9:70–91.PubMedCrossRef
82.
Zurück zum Zitat Pult H, Korb DR, Blackie CA, Knop E, Marx E. About vital staining of the eye and eyelids. I. The anatomy, physiology, and pathology of the eyelid margins and the lacrimal puncta by E. Marx. Optom Vis Sci. 1924;2010(87):718–24. Pult H, Korb DR, Blackie CA, Knop E, Marx E. About vital staining of the eye and eyelids. I. The anatomy, physiology, and pathology of the eyelid margins and the lacrimal puncta by E. Marx. Optom Vis Sci. 1924;2010(87):718–24.
83.
Zurück zum Zitat Gokhale M, Stahl U, Jalbert I. In situ osmometry: validation and effect of sample collection technique. Optom Vis Sci. 2013;90:359–65.PubMedCrossRef Gokhale M, Stahl U, Jalbert I. In situ osmometry: validation and effect of sample collection technique. Optom Vis Sci. 2013;90:359–65.PubMedCrossRef
84.
Zurück zum Zitat Szczesna-Iskander DH. Measurement variability of the TearLab Osmolarity System. Cont Lens Anterior Eye. 2016;39:353–8.PubMedCrossRef Szczesna-Iskander DH. Measurement variability of the TearLab Osmolarity System. Cont Lens Anterior Eye. 2016;39:353–8.PubMedCrossRef
Metadaten
Titel
Osmolarity spatial variations on the ocular surface
verfasst von
Hugo Pena-Verdeal, MSc, PhD
Jacobo Garcia-Queiruga, MSc, PhD
Noelia Nores-Palmas, OD, MSc
Veronica Noya-Padin, OD, MSc
Maria J. Giraldez, MSc, PhD
Eva Yebra-Pimentel, OD, PhD
Publikationsdatum
18.12.2023
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-023-00561-0